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Abstract We propose a novel complex-analytic method for sums of i.i.d. random
variables that are heavy-tailed and integer-valued. The method combines singularity
analysis, Lindelöf integrals, and bivariate saddle points. As an application, we prove
three theorems on precise large and moderate deviations which provide a local variant
of a result by Nagaev (Transactions of the sixth Prague conference on information
theory, statistical decision functions, random processes, Academia, Prague, 1973).
The theorems generalize five theorems by Nagaev (Litov Mat Sb 8:553–579, 1968)
on stretched exponential laws p(k) = c exp(−kα) and apply to logarithmic hazard
functions c exp(−(log k)β),β > 2; they cover the big-jumpdomain aswell as the small
steps domain. The analytic proof is complemented by clear probabilistic heuristics.
Critical sequences are determined with a non-convex variational problem.
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1 Introduction

Themotivation of the present article is twofold. First, we present a new analyticmethod
for the investigation of large powers of generating functions of sequences that satisfy
some analyticity and log-convexity conditions. Themethod is explained and developed
for probability generating functions but it has potentially broader applications and is
motivated by techniques commonly used in analytic combinatorics [9]. Specifically,
we show that methods akin to singularity analysis can be pushed beyond the realm of
functions amenable to singularity analysis in the sense of [9, Chapter VI.1].

Second, we explore consequences for probabilistic limit laws and prove three the-
orems on precise large and moderate deviations for sums of independent identically
distributed (i.i.d.) random variables that are heavy-tailed [5] and integer-valued. The
theorems generalize results on stretched exponential laws by Nagaev [12] which have
recently attracted interest in the context of the zero-range process [2]. They are close in
spirit to results by Nagaev [14], however with more concrete conditions on the domain
of validity of the theorems, and provide deviations results “on thewhole axis” [17]. Our
assumptions are more restrictive than one may wish from a probabilistic perspective;
in return, they allow for sharp results and may provide a helpful class of explicit refer-
ence examples. For example, we prove that one of the bounds of the (local) big-jump
domain for logarithmic hazard functions derived in [3] is sharp.

The analytic proof of the theorems is complemented by clear probabilistic heuris-
tics. Our results cover different regimes: a small-steps or moderate deviations regime,
where a classical variant of a local central limit theorem with corrections expressed
with the Cramér series holds [10], and a big-jump regime where the large deviation
is realized by making one out of the n variables large. In the language of statistical
mechanics and the zero-range process, they correspond to supersaturated gas and a
condensed phase [2]. The critical scales that distinguish between regimes are defined
with the help of a non-convex variational problem which encodes competing proba-
bilistic effects. The variational problem has been analyzed before [12,17]; our strong
assumptions on the probability weights allow for a detailed analysis. Our results are
further facilitated by the non-negativity of the random variables, which dispenses us
from dealing with left tails.

The study of combinatorial generating functions shares much in common with the
study of probability generating functions; in fact in many instances they coincide or
run parallel as is the case for more recent investigations in the area of random combi-
natorial structures [1]. From the viewpoint of complex function theory, the key here
involves relating asymptotic questions to questions about the nature of the singularities
of generating functions viewed as more global analytic objects. In most of the suc-
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cessful applications of this singularity analysis to coefficient asymptotics a bridge is
provided by the realization that the series in question satisfies some global algebraic or
differential equation. Generating functions for which this is the case are referred to as
holonomic. Pushing beyond this class in a systematic way requires new ideas and one
of the most promising of these is the use of Lindelöf integrals. Lindelöf introduced
these classically [11] as a means to constructively carry out analytic continuations
of function elements (series) in a fairly general setting. In more recent times, his
construction has begun to be used to study non-holonomic combinatorial generating
functions [8]. The generating functions for heavy-tailed distributions studied in this
paper are of non-holonomic type and our methods of studying them show a new appli-
cation of Lindelöf’s construction that has novel connections to other areas of analytic
asymptotic analysis such as bivariate steepest descent. In future work, we hope to
build on the present article in a way that broadens the application of harmonic analysis
and complex function theory to problems of asymptotic analysis in both probability
and combinatorics, such as applying the theory of Hardy spaces and Riemann-Hilbert
analysis and extensions of Tauberian theorems as originally envisioned by Paley and
Wiener [7].

Our proof shares some features with [14], where cumulative distribution functions
are approximate Laplace transforms and approximating moment generating function
admit analytic extensions. Contour integrals that appear in inversion formulas are
deformed and analyzed by Gaussian approximation—our proof details in Sect. 5.4
follow [14]. There are, however, key differences: we need not deal with approximation
errors because of stronger analyticity assumptions, and our detailed analysis of the
underlying variational problem allows us to formulate more concrete conditions for
our theorems.

The remainder of this article is organized as follows. In Sect. 2, we formulate our
main results and discuss applications to stretched exponential weights c exp(−kα))

andweights c exp(−(log x)β)with logarithmic hazard functions. In Sect. 3, we explain
the proof strategy in five steps, which are treated in detail in the remaining sections.
Steps 1 and 2 concern analytic extensions and notably use the Lindelöf and Bromwich
integrals (Sect. 4). Steps 4 and 5 analyze the critical points of a bivariate function and
deal with the Gaussian approximation to a double integral (Sect. 5). The pivotal Step 3
connects the contour integral and the bivariate double integral; it leads to the full proof
of our theorems that can be found in Sect. 6.

2 Results

We use the notation an ∼ bn if an = (1 + o(1))bn and an � bn if an = o(bn).

2.1 Preliminaries

In order to formulate the results, we need to introduce critical sequences deduced
from a variational problem and the Cramér series. Let X, X1, X2, . . . be independent,
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identically distributed random variables with values in N and law

P(X = k) = p(k) = exp(−q(k)) (k ∈ N) (2.1)

for some sequence (q(k))k∈N. We assume that X is heavy-tailed and has moments of
all orders, i.e., the generating function

G(z) =
∞∑

k=1

p(k)zk (|z| ≤ 1) (2.2)

has radius of convergence 1 and E[Xm] = ∑∞
k=1 k

m p(k) < ∞ for all m ∈ N. Let μ

and σ 2 be the expectation and variance of X . Set Sn = X1+· · ·+Xn .We are interested
in the asymptotic behavior of P(Sn = μn + Nn) when n, Nn → ∞ with Nn � √

n.
The following assumption is similar to conditions considered by Nagaev [14].

Assumption 2.1 For some a > 0, the sequence (q(k))k∈N∩(a,∞) extends to a smooth
function q : (a,∞) → R which has the following properties:

(i) q ′ > 0, q ′′ < 0, and q ′′′ > 0.
(ii) limx→∞ xq ′(x)/(log x) = ∞.
(iii) c1

q ′(x)
x ≤ |q ′′(x)| ≤ c2

q ′(x)
x for some constants c1, c2 > 0.

(iv) c3
|q ′′(x)|

x ≤ q ′′′(x) ≤ c4
|q ′′(x)|

x for some constants c3, c4 > 0.

(v) q ′(x) ≤ α
q(x)
x for some α ∈ (0, 1).

Assumption 2.1 allows for an easy analysis of an auxiliary variational problem,
which is essential to the formulation of ourmain results. Let us collect a few elementary
consequences. Under Assumption 2.1, q is concave on (a,∞) and p = exp(−q) is
log-convex. Moreover, limx→∞ x2q ′′(x)/ log x = −∞ and for y > x > a, using

q ′(y)
q ′(x)

= exp
(
−

∫ y

x

|q ′′(u)|
q ′(u)

du
)
, (2.3)

we estimate ( y
x

)−c2 ≤ q ′(y)
q ′(x)

≤
( y
x

)−c1 ≤ 1 (2.4)

Similarly, for y > x > a,

( y
x

)c3 ≤ q ′′(y)
q ′′(x)

≤
( y
x

)c4
. (2.5)

Since G(z) = ∑
k z

k exp(−q(k)) has radius of convergence 1, we also know that

lim
x→∞ q ′(x) = lim

x→∞ q ′′(x) = lim
x→∞ q ′′′(x) = 0. (2.6)

Indeed by Assumption 2.1, q ′ is eventually decreasing and the limit � := limx∞ q ′(x)
exists in R ∪ {−∞}. Then, � = limx→∞ q(x)/x and G(z) has radius of convergence
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exp(�) = 1, whence � = 0. Assumption 2.1(iii) and (iv) leads to the statements on
higher order derivatives. Assumption 2.1(v) implies q(x) = O(xα) as x → ∞.

Our method of proof requires two more analyticity assumptions.

Assumption 2.2 There exists b ≥ 0 such that (p(n))n∈N∩[b,∞) extends to a function
p(ζ ) that is continuous on a closed half-planeRe ζ ≥ b, analytic on the open half-plane
Re ζ > b, and in addition satisfies

(i) For every ε ∈ (0, π), some Cε > 0, and all ζ , we have |p(ζ )| ≤ Cε exp(ε|ζ |).
(ii)

∫ ∞
−∞ |(b + is)k p(b + is)|ds < ∞ for all k ∈ N.

Moreover, p(x) = exp(−q(x)) for all x ≥ max(a, b) with a, q(x) as in Assump-
tion 2.1.

Assumption 2.3 Let p(ζ ) = exp(−q(ζ )) be the analytic extension from Assump-
tion 2.2, defined in Re ζ ≥ b. Then, q(ζ ) = −Logζ , defined with the principal branch
of the logarithm is analytic as well, and the following holds:

(i) For r > 0 large, let zr = b + i
√
r2 − b2. Then, as r → ∞,

∣∣∣∣
∫

Re ζ=b, |ζ |≥r
exp(−Re q(ζ ))dζ

∣∣∣∣ ≤ exp(−Re q(zr ) + O(log r)).

(ii) Im (ζq ′(ζ )) ≤ Im (ζq ′(r)) for all large r and all ζ with Im ζ ≥ 0 and |ζ | = r .
(iii) |q ′′′(ζ )| ≤ C |q ′′(ζ )/ζ | for some C > 0 and all ζ .

Assumption 2.3 enters the proof of Theorem 4.4 only.

Variational Problem and Critical Scale

Assumption 2.1 is tailored to the analysis of an auxiliary variational problem (see
also [12,17]), motivated by the following heuristics. For subexponential random vari-
ables, the typical large deviations behavior is realized by making one out of the n
variables large,

P(Sn = μn + Nn) ≈ nP(Xn = Nn − kn)P(Sn−1 = μn + kn) (2.7)

with a yet to be determined optimal kn . Assuming that a normal approximation for the
second factor is justified, we get

P(Sn = μn + Nn) ≈ exp
(
−q(Nn − kn) − k2n

2nσ 2

)
(2.8)

where we have neglected prefactors n and 1/
√
2πnσ 2 [see Eq. (2.11) below for a

more refined heuristics]. The optimal kn is then determined by minimizing the term
in the exponential. Thus, we are led to the minimization of

fn(x) = q(x) + (Nn − x)2

2nσ 2 . (2.9)
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As illustrated in Fig. 1, the nature of the variational problem changes with Nn . Define
x∗
n > 0 and N∗

n by

q ′′(x∗
n ) = − 1

nσ 2 , N∗
n = x∗

n + nσ 2q ′(x∗
n ). (2.10)

For sufficiently large n, the inflection point x∗
n is uniquely defined because of the

monotonicity from Assumption 2.1 and Eq. (2.6), moreover x∗
n → ∞. The quantity

N∗
n is defined in such a way that the tangent to the curve y = q ′(x) at x = x∗

n has
equation y = (N∗

n − x)/(nσ 2), see Fig. 3.
The next two lemmas characterize the minimization of fn ; they are proven in

Sect. 5.1. Thefirst lemma relates the critical points of fn to the location of Nn compared
to N∗

n .

Lemma 2.4 For sufficiently large n, the following holds true:

(a) If Nn < N∗
n , then f ′

n > 0 on (a,∞).
(b) If Nn = N∗

n , then f ′
n has the unique zero x∗

n , moreover f ′
n(x) ≥ 0 with equality if

and only if x = x∗
n .

(c) If Nn > N∗
n and lim supn→∞ Nn/(nσ 2) < limx↘a q ′(x), then fn has exactly two

critical points xn and x ′
n, which satisfy x ′

n < x∗
n < xn < Nn and

fn(x
′
n) = max

(a,x∗
n )

fn, fn(xn) = min
(x∗

n ,∞)
fn .

(d) If Nn > N∗
n and lim infn→∞ Nn/(nσ 2) > limx↘a q ′(x), then fn has a unique

critical point xn. It satisfies xn ∈ (x∗
n , Nn) and is a global minimizer.

For Nn > N∗
n , the function fn may have two local minimizers: a and xn , and we may

wonder which one is the global minimizer. The answer depends on the location of Nn

compared to a new critical sequence N∗∗
n . Concrete examples are given in Sects. 2.3

and 2.4.

Lemma 2.5 For n sufficiently large, there is a uniquely defined N∗∗
n > N∗

n such that:

(a) If N∗
n < Nn < N∗∗

n , then fn(a) < fn(xn).
(b) If Nn = N∗∗

n , then fn(a) = fn(xn).
(c) If Nn > N∗∗

n , then fn(xn) < fn(a).

In general it may not be straightforward to determine N∗∗
n exactly, but it is simple to

find a lower bound: if a = 0 and q(Nn) < N 2
n /(2nσ 2), then Nn > N∗∗

n . This lower
bound corresponds, roughly, to the sequence 	(n) in [14].

The sequences introduced up to now are ordered as follows.

Lemma 2.6 As n → ∞, we have

√
n � x∗

n < N∗
n < N∗∗

n = O(n1/(2−α)) � n,

and for some constants C, δ > 0

(1 + δ)x∗
n ≤ N∗

n ≤ Cx∗
n .
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x∗
n

fn(x) fn(x)

xx x

N2
n

2nσ2

Nn Nn Nnx′
n x∗

n xn

N2
n

2nσ2

N2
n

2nσ2

x′
n x∗

n xn

q(Nn)

q(Nn)

(c)(b)(a)

q(Nn)

fn(x)

Fig. 1 Minimization of fn(x) = q(x) + (Nn − x)2/(2nσ 2) and illustration of Lemmas 2.4 and 2.5 for
weights q : (0, ∞) → R with q(0) = 0. For Nn > N∗

n , fn(x) has two critical points x ′
n and xn separated

by an inflection point x∗
n . The global minimum is reached either at x = xn or at x = 0. a Nn < N∗

n . b
N∗
n < Nn < N∗∗

n . c Nn > N∗∗
n

The lemma is proven in Sect. 5.1. Lemmas 2.4 and 2.5, together with the heuristics
described above, suggest that for Nn > N∗∗

n , the unlikely event Sn = nμ + Nn is
realized by making one component of the order of xn . One may wonder how far xn is
from swallowing all of the overshoot Nn .

Lemma 2.7 Suppose Assumption 2.1(i) holds true. Let Nn > N∗
n . Then,

Nn − N∗
n ≤ xn ≤ Nn, nσ 2 f ′′

n (xn) = 1 − nσ 2|q ′′(xn)| = 1 + O
(N∗

n

Nn

)
.

In particular, for Nn � N∗
n , we have xn ∼ Nn and nσ 2 f ′′(xn) → 1. The lemma is

proven in Sect. 5.1. The information on the second derivative enters a refined heuristics:
we make the ansatz that conditional on the unlikely event Sn = nμ + Nn , there is
one large component of size xn , but the size is not deterministic. Instead, there are
fluctuations around xn . This yields

P(Sn = nμ + Nn) ≈ n
∑

�

P(X1 = xn + �)P(Sn−1 = Nn − xn − �)

≈ n
∑

�

exp(− fn(xn + �))√
2πnσ 2

≈ n e− fn(xn)
∑

�

exp(− f ′′
n (xn)�2/2)√
2πnσ 2

≈ n exp(− fn(xn))√
1 − nσ 2|q ′′(xn)|

. (2.11)

Theorem 2.11 below confirms the heuristics for large Nn , up to correction terms both
in the prefactor and in the exponential.

Cumulants and Cramér Series

The heuristics together with Lemma 2.7 suggest that the optimal kn = Nn − xn in
Eq. (2.8) is of order up to N∗

n � √
n. At this scale, the normal approximation fails and

requires correction terms. The latter are usually expressed with the Cramér series [10],
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whose definition we briefly recall. Let ϕ(t) be the cumulant generating function of X ,

ϕ(t) = logE[ et X ] = logG( et ) (Re t ≤ 0). (2.12)

Note ϕ(0) = 0. As t → 0, ϕ(t) can be approximated to arbitrary order

ϕ(t) =
r∑

j=1

κ j
t j

j ! + O(tr+1) (2.13)

with finite and real expansion coefficients κ j ∈ R, the cumulants, see Sect. 4. Notice
that κ1 = μ is the expectation and κ2 = σ 2 > 0 is the variance of X .

Definition 2.8 Let t (τ ) = 1
σ 2 τ +∑

j≥2 a jτ
j be the formal power series obtained by

inverting

σ 2t (τ ) +
∑

j≥2

κ j+1
t (τ ) j

j ! = τ.

The Cramér series
∑

j≥0 λ jτ
j is the formal power series defined by composing the

expansion of t (τ ) with the expansion of (μ + τ)t − ϕ(t),

(μ + τ)t (τ ) −
∑

j≥1

κ j
t (τ ) j

j ! = − τ 2

2σ 2 + τ 3
∑

j≥0

λ jτ
j .

Equivalently, the Cramér series is the left-sided Taylor expansion of the Legendre
transform ϕ∗ at μ: let ϕ∗(x) := supt≤0(t x − ϕ(t)). Then, as τ ↗ 0,

ϕ∗(μ + τ) = − τ 2

2σ 2 + τ 3
r∑

j=0

λ jτ
j + O(τ r+4) (2.14)

to arbitrarily high order r .

Remark 1 For t > 0, log[∑k≥1 p(k) exp(kt)] is infinite and the standard convention
is to set ϕ(t) = ∞; then ϕ∗(μ + τ) ≡ 0 for τ ≥ 0 and Eq. (2.14) no longer applies.
We adopt a different convention, however, for which ϕ(t) is smooth in a neighborhood
of 0 (see Theorem 4.2), though it becomes complex-valued, and Eq. (2.14) applies to
(Re ϕ)∗ for positive τ as well.

2.2 Main Theorems

Set fn0 = fn and for r ≥ 1,

fnr (x) = q(x) + (Nn − x)2

2nσ 2 − (Nn − x)3

n2

r−1∑

j=0

λ j

(Nn − x

n

) j
. (2.15)
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Remember the minimization of fn(x) and the critical scales
√
n � N∗

n < N∗∗
n =

O(n1/(2−α)) � n illustrated in Fig. 1. In Proposition 2.12 below, we check that the
properties of fn carry over to fnr . The following theorems provide a local variant of
a large deviations theorem by Nagaev [14], see also [15, Theorem 2.1]. Local results
have been provided before, see [3] and the references therein. The principal difference,
apart from the local character of the theorems, is that our detailed investigation of the
variational problem and notably Lemma 2.7 allows us to formulate conditions directly
in terms of Nn , whereas S. V. Nagaev’s criteria included an indirect condition on the
sign of some second derivative.

Theorem 2.9 Let Nn → ∞ with
√
n � Nn ≤ (1+ o(1))N∗

n . Pick r large enough so
that n(Nn/n)r → 0. Then,

P(Sn = μn + Nn) ∼ 1√
2πσ 2n

exp
(
− N 2

n

2nσ 2 + N 3
n

n2

r−1∑

j=0

λ j

(Nn

n

) j)
.

Theorem 2.10 Let Nn → ∞ with lim inf Nn/N∗
n > 1 and Nn = O(n1/[2−α]). Pick

r large enough so that n(N∗
n /n)r → 0. Then,

P(Sn = μn + Nn) = (1 + o(1))
1√

2πσ 2n
exp

(
− N 2

n

2nσ 2 + N 3
n

n2

r−1∑

j=0

λ j

(Nn

n

) j)

+ (1 + o(1))
n√

1 − nσ 2|q ′′(xnr )|
exp

(
− fnr (xnr )

)

with xnr = Nn + O(N∗
n ), the largest solution of f ′

nr (xnr ) = 0.

Lemma 2.5 suggests that for Nn � N∗∗
n , the first contribution dominates and for

Nn � N∗∗
n the second contribution wins, but one has to be careful because of the

factors n and 1/
√
2πnσ 2 as well as the Cramér corrections; a detailed evaluation is

best left to concrete examples (see, however, Corollary 2.13 below).

Theorem 2.11 Let Nn → ∞ with Nn � n1/(2−α). Pick r large enough so that
n(N∗

n /n)r → 0. Then,

P(Sn = μn + Nn) ∼ n exp
(
− fnr (xnr )

)

with xnr = Nn + O(N∗
n ), the largest solution of f ′

nr (xnr ) = 0.

In practice, one may prefer not to deal with the Cramér corrections or the variational
problem, and the following proposition is helpful.

Proposition 2.12 Suppose that lim infn→∞ Nn/N∗
n > 1. Fix r ∈ N0. Then, for suffi-

ciently large n, xnr is the maximizer of fnr restricted to (x∗
n , Nn) and the unique zero
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10 J Theor Probab (2019) 32:1–46

of f ′
nr in that interval. Moreover 1 − nσ 2|q ′′(xnr )| = 1 + O(N∗

n /Nn) stays bounded
away from zero and

xnr = Nn − (1 + o(1))nσ 2q ′(xnr ) = Nn + O(N∗
n ),

fnr (xnr ) = q(xnr ) + 1

2
(1 + o(1))nσ 2q ′(xnr ) = q(Nn)

(
1 + O

(N∗
n

Nn

))
.

The proposition is proven in Sect. 5.1. For Nn � N∗
n , we obtain xnr ∼ Nn , q ′(xnr ) ∼

q ′(Nn), and q(xnr ) = q(Nn) − (1 + o(1))nσ 2q ′(Nn), hence

fnr (xnr ) = q(Nn) − 1

2
(1 + o(1))nσ 2q ′(Nn)

2. (2.16)

Now suppose in addition that lim inf N2
n

2nσ 2 /q(Nn) > 1. Then, in Theorem 2.10, the

first summand is of order exp(−(1+o(1))N 2
n /(2nσ 2), the second of order exp(−(1+

o(1))q(Nn)), so the first contribution is negligible and the validity of Theorem 2.11
extends accordingly, since 1−nσ 2|q ′′(xnr )| → 1 for Nn � N∗

n . Eq. (2.16) now yields
the following corollary.

Corollary 2.13 Take Nn → ∞ with Nn � N∗
n and lim inf N2

n
2nσ 2 /q(Nn) > 1. Then

P(Sn = nμ + Nn) ∼ n e−q(Nn) = nP(X = Nn)

if and only if
√
nσ 2q ′(Nn) → 0.

In concrete examples, Theorem 2.9 should allow us to extend the domain of validity
of the corollary to Nn � N∗∗

n . The condition
√
nσ 2q ′(Nn) → 0 is closely related to

the insensitivity scale discussed by Denisov, Dieker and Shneer [3], as

p(Nn ± √
nσ 2

)

p(Nn)
→ 1 ⇔

√
nσ 2q ′(Nn) → 0. (2.17)

Remark 2 (Big-jump vs. small-steps) The domain where P(Sn = nμ + Nn) ∼
nP(X = Nn) is sometimes called big-jump domain. Think of Sn as the position
of a random walker with step size distribution p(k). In the situation of Corollary 2.13,
the unlikely event that the walker has travelled a distance μn + Nn much larger than
the expected distanceμn is realized by one big-jump of size Nn . Finding the boundary
of the big-jump domain is an active field of research [3].

The interpretation of Theorem 2.9, in contrast, is that the moderate overshoot Nn is
achieved by a collective effort: all steps tend to stay small, though each stretches a little
beyond its expected value μ. For stretched exponential variables, this interpretation is
made rigorous in [12] and [2].

Remark 3 (Condensation in the zero-range process) In the zero-range process, the ran-
dom variables X1, . . . , Xn model the number of particles at lattice sites j = 1, . . . , n,
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with Sn the total number of particles, and μ is a critical density. Theorem 2.9 corre-
sponds to supersaturated gas. In Corollary 2.13, the particle excess Nn is absorbed by
a condensate, i.e., one large occupation number. In Theorem 2.11, the particle excess
is shared by a condensate of size xnr < Nn and supersaturated gas. See [2] and [6,
Section 7].

We conclude with an equivalent but more intrinsic formulation of Theorem 2.11.
In Sect. 4, we shall see that G(z) extends to a function that is analytic in the slit plane
C \ [1,∞), and in addition the limit G( et ) = limε↘0 G( et + iε) exists for all t ≥ 0.
So the cumulant generating function ϕ(t) = logG( et ) extends to a function that is
well-defined and smooth in a neighborhood of the origin in R, and Eq. (2.13) stays
valid for small positive t . We define

�n(t, ζ ) = − q(ζ ) + nRe ϕ(t) − (μn + Nn)t + tζ

= − q(ζ ) + n
r−1∑

j=2

κ j
t j

j ! − t
(
Nn − ζ ) + O(tr ). (2.18)

The asymptotic expansion holds for every order r . For Nn � N∗
n and sufficiently

large n, the bivariate function �n(t, ζ ) has exactly two critical points in (0, Nn
nσ 2 ) ×

(a,∞). We label them as (tn, ζn) and (t ′n, ζ ′
n) with tn < t ′n . Then, in the situation of

Theorem 2.11, we have

P(Sn = nμ + Nn) ∼ n e�n(tn ,ζn) . (2.19)

It is in this form thatwe prove the theorem. Let us explain how to recover the expression
in terms of fnr . We may solve for ∇�n(t, ζ ) = 0 in two steps: (1) use ∂t�n(t, ζ ) = 0
to express t = t (ζ ) as a function of ζ , (2) plug the expression into ∂ζ �n(t, ζ ) to obtain
an equation for ζ . This latter step breaks into the following two stages:

(2a) substitute the expression of t = t (ζ ) into the expression for �n(t, ζ ) so as to
obtain a function �n(t (ζ ), ζ ) of ζ only;

(2b) set the derivative of �n(t (ζ ), ζ ) with respect to ζ to zero,

which is valid since

d

dζ
�n(t (ζ ), ζ ) = ∂�n

∂ζ
(t (ζ ), ζ ) + ∂�n

∂t
(t (ζ ), ζ )

dt

dζ
(t) = ∂�n

∂ζ
(t (ζ ), ζ ). (2.20)

By the definition of the Cramér series, step (2a) gives

�n(t (ζ ), ζ ) = −q(ζ ) − (Nn − ζ )2

2nσ 2 + (Nn − ζ )3

n2
∑

j≥0

λ j

(Nn − ζ

n

) j
(2.21)

Truncation of the asymptotic expansion on the right-hand side gives precisely the
function − fnr (ζ ). For r large enough, step (2b) shows that we may approximate

�n(tn, ζn) = − fnr (xnr ) + o(1), nσ 2q ′′(ζn) = nσ 2q ′′(xnr ) + o(1) (2.22)
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hence the equivalence of Eq. (2.19) with the expression from Theorem 2.11.

2.3 Application to Stretched Exponential Laws

Here,we explain how to recoverfive theoremsbyNagaev [12] for stretched exponential
variables. Let α ∈ (0, 1), c > 0, and

p(k) = c exp(−kα), q(k) = kα − log c (k ∈ N). (2.23)

We need not check Assumption 2.3 since Theorem 4.4 for stretched exponential
weights has already been proven in [10, Theorem 2.4.6].

Lemma 2.14 The probability weights (2.23) satisfy Assumptions 2.1 and 2.2, and we
have

x∗
n = [

α(1 − α)nσ 2]1/(2−α)
, N∗

n = 2 − α

1 − α
x∗
n , N∗∗

n = Cα(nσ 2)1/(2−α)

with Cα = (2 − α)(2 − 2α)−(1−α)/(2−α). Moreover,
√
nσ 2q ′(Nn) → 0 if and only if

Nn � n−1/(2−2α).

The proof of the lemma is sketched in “Appendix A”. The critical scale n−1/(2−α) is
explained by a simple scaling relation: for Nn = kn1/(2−α), we have

fn
(
yn1/(2−α)

) = nα/(2−α)
(
yα + (k − y)2

2σ 2

)
− log c. (2.24)

Acareful examination of the expressions inTheorem2.10 shows that the first summand
dominates if Nn ≤ (1 − δ)N∗∗

n while the second dominates if Nn ≥ (1 + δ)N∗∗
n

for some δ > 0. In particular, Theorem 2.9 extends to Nn ≤ (1 − δ)N∗∗
n , which

corresponds to Theorem 1 in [12]. Theorem 2.10 for Nn ∼ N∗∗
n is Theorem 4 in [12].

For Nn ≥ (1 + δ)N∗∗
n , we have

P(Sn = nμ + Nn) ∼ 1√
1 − nσ 2q ′′(xnr )

e− fnr (xnr ) . (2.25)

This regime can be divided into three cases:

(a) Nn � n−1/(2−2α) corresponds to Theorem 2 in [12].
(b) When Nn is of the order of n−1/(2−2α), the corrections from the Cramér series are

irrelevant and
P(Sn = μn + Nn) ∼ n exp

(− fn(xn)
)
, (2.26)

i.e., we may choose r = 0. This corresponds to Theorem 6 from the erratum [13],
replacing Theorem 5 in the original article [12]. The statement actually extends
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to Nn � n−1/(3−3α). Indeed, q ′(xnr ) ∼ (Nn − xnr )/(nσ 2) = o(Nn/n) yields
Nn − xnr = (1 + o(1))nσ 2αNα−1

n and

fnr (xnr ) = fn(xnr ) + O
(
nN−(3−3α)

n

)
, (2.27)

and one can check that fn(xnr ) = fn(xn) + o(1) if Nn � n−1/(3−3α).
(c) Nn � n−1/(2−2α) corresponds to Theorem 3 in [12] and our Corollary 2.13.

2.4 Application to Logarithmic Hazard Functions

Here we specialize to

p(k) = c exp
(−(log k)β

)
, q(k) = − log c + (log k)β (2.28)

with β > 2.1

Lemma 2.15 The weights (2.28) satisfy Assumptions 2.1–2.3. Moreover

N∗
n ∼ 2x∗

n ∼ 2
√
21−ββnσ 2(log n)β−1, N∗∗

n ∼
√
2nσ 2(log n)β,

and
√
nσ 2q ′(Nn) → 0 if and only if Nn � √

n(log n)β−1.

The lemma is proven “Appendix A”. Notice that unlike the stretched exponential case
(Lemma 2.14), N∗∗

n is much larger than N∗
n . The scaling relation (2.24) is modified as

follows: for Nn = k
√
nσ 2(log n)β−1 ∼ kx∗

n , we have

fn(yx
∗
n ) = (log x∗

n )
β + β(log n)β−1

(
log y + (k − y)2

2

)
+ o

(
(log n)β−1

)
(2.29)

and (log x∗
n )

β ∼ (log n)β ∼ (log Nn)
β .

Our resultsmay nowbe applied to obtain a sharp boundary for the big-jump domain.

Theorem 2.16 Let p(k) be as in Eq. (2.28) with β > 2 and Nn � √
n. Then P(Sn =

μn + Nn) ∼ nP(X = Nn) if and only if Nn � √
n(log n)β−1.

The “if” part of the theorem is actually a special case of [3, Theorem 8.2] and as such
not new. The “only if” part shows that the boundary derived in [3] is in fact sharp.

Proof Theorem 2.16 Let In := √
nσ 2(log n)β−1 and notice In � N∗∗

n for β > 2.
Suppose that Nn � In . Then we have, in particular, Nn � N∗∗

n . Write Nn = αnN∗∗
n

1 For β ∈ (1, 2], xq ′(x) = β(log x)β−1 → ∞ but the stronger condition xq ′(x)/ log x → ∞ from
Assumption 2.1(ii) fails. We suspect that this restriction is technical and could be lifted with more detailed
estimates, but a proof or disproof is beyond this article’s scope.
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with αn → ∞. Then,

N 2
n /(2nσ 2)

(log Nn)β
= α2

n

(
1 + o(1)

logαn

log n

)−β ≥ α2
n

(logαn)β
→ ∞ (2.30)

and it follows from Corollary 2.13 that P(Sn = nμ + Nn) ∼ nP(X = n), hence
Nn � N∗∗

n is indeed a sufficient condition. In order to check that it is necessary, we
treat the case Nn = O(In) with Theorems 2.9 and 2.10.

Case 1 N∗
n � Nn = O(In). In Theorem 2.10 we obtain a lower bound by neglect-

ing the first contribution and estimating 1 − nσ 2|q ′′(xnr )| ≤ 1. Combining with
Proposition 2.12, we find

P(Sn = nμ + Nn) ≥ n exp(− fnr (xnr ) + o(1))

≥ n exp
(
−q(Nn) + (1 + o(1))nσ 2q ′(Nn)

2 + o(1)
)
(2.31)

hence in view of Nn = O(In) and Lemma 2.15

lim inf
n→∞

P(Sn = nμ + Nn)

nP(X = Nn)
≥ lim inf

n→∞ exp
(
(1 + o(1)nσ 2q ′(Nn)

2)
)

> 1. (2.32)

Case 2 Nn = O(N∗
n ). Then, we have in particular Nn = o(N∗∗

n ). Write Nn =
αnN∗∗

n with αn → 0, then

N 2
n

2nσ 2(log Nn)β
≤ α2

n(log n)β

(log
√
n)β

→ 0 (2.33)

and Theorems 2.9 and 2.10 show

log
P(Sn = nμ + Nn)

nP(X = Nn)
≥ − N 2

n

2nσ 2 + (log Nn)
β + O(log n) → ∞. (2.34)

��

3 Proof Strategy

Here, we explain the strategy for the proof of Theorems 2.9–2.11.We focus on the case
Nn = o(n) and Theorem 2.10. Set m = μn + Nn . We start from the observation that
P(Sn = m) is equal to [zm]G(z)m , the coefficient of zm in the expansion of G(z)m ,
which in turn is given by contour integrals

[zm]G(z)n = 1

2π i

∮
G(z)n

zm
dz

z
= 1

2π i

∫ 2π i

0
enϕ(t)−mt dt. (3.1)

The contour integral can be taken over any circle centered at the origin with radius
r ≤ 1. A steepest descent ansatz would look for a point zn such that znG ′(zn) =
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(b)(a)

|z| = eε

|z| = 1

ε0

2πi

Fig. 2 Contour integrals in the z-plane (a) and in the t-plane (b). Dotted lines: Eq. (3.1). Solid lines:
deformed contours in Eq. (3.3). Recall that z = et . Later ε = ηn will be chosen in a judicious way. For
Nn � N∗∗

n , the dominant contribution should come from the horizontal pieces of the deformed contour in
the t-plane. For Nn � N∗∗

n , the dominant contribution should instead be from the vertical line

m/n = μ + Nn/n, or ηn with ϕ′(ηn) = μ + Nn/n, and then integrate over |z| = |zn|
(or Re t = Re ηn). However, in the regimem/n > G ′(1) = μ that we investigate there
is no such point, and instead, we follow an approach that is in the spirit of singularity
analysis [9] but with several novel ingredients. Crucially, the generating functionG(z)
does not fall into the class of functions which Flajolet and Sedgwick call “amenable
to singularity analysis” [9] [Chapter VI].

Step 1: Analytic extension to slit planeObserve that G(z) has an analytic extension
to the slit planeC\[1,∞). This is proven with the help of the Lindelöf integral [8,11],
see Proposition 4.1. The key ingredient here is that p(ζ ) is analytic in a complex
half-plane containing the integers k ∈ N and growth slower than exp((π − ε)|ζ |) as
ζ → ∞.

Step 2: Behavior near the dominant singularity and along the slit The Lindelöf
integral actually shows that the analytic extension G(z) has well-defined limits as z
approaches the slit [1,∞) from above or below, i.e., the limits limε↘0 G( et + iε) and
limε↘0 G( et − iε) exist for all t ∈ R. Moreover the imaginary part along the slit is
given by a Bromwich integral,

lim
ε↘0

ImG( et + iε) = 1

2i

∫ 1/2+i∞

1/2−i∞
etζ p(ζ )dζ (t ≥ 0). (3.2)

The line of integration Re ζ = 1/2 can be replaced by any other line Re ζ = x > 0.
As t ↘ 0, the imaginary part vanishes faster than any power of t , whereas the real
part can be approximated to arbitrarily high order by a Taylor polynomial.

Step 3: Contour integrals We may now deform the contour of integration: in the
z-plane, we replace the circle of radius 1 by a Hankel-type contour consisting of a
circle of radius eε and a piece hugging the segment [1, ε), see Fig. 2. In the t-plane, we
replace the vertical segment joining 0 and 2π i by the three other sides of the rectangle
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with corners 0, ε, ε + 2π i, 2π i. This yields

[zm]G(z)n = 1

2π i

(∫ ε

0
enϕ(t)−mt dt +

∫ 2π

0
enϕ(ε+iθ)−m(ε+iθ) idθ

−
∫ ε

0
enϕ(t+2π i)−m(t+2π i) dt

)
. (3.3)

We focus on Nn = o(n) and choose ε = ηn as the solution of

Re ϕ′(ηn) = m

n
= μ + Nn

n
. (3.4)

Notice ηn ∼ Nn/(nσ 2). Using the identities

G(z) = G(z), ∀t ≥ 0 : ϕ(t + 2π i) = ϕ(t), (3.5)

Eq. (3.3) becomes
[zm]G(z)n = Hn + Vn (3.6)

with

Hn = 1

π

∫ ηn

0
enRe ϕ(t)−mt sin

(
nIm ϕ(t)

)
dt

Vn = 1

π

∫ π

0
enRe ϕ(ηn+iθ)−mηn cos

(
nIm ϕ(ηn + iθ)

)
dθ.

(3.7)

Standard arguments show that the dominant contribution to Vn come from small θ .
Since ImG( et ) → 0 faster than any power of t as t ↘ 0 and

ImG( et ) = Im eϕ(t) = eRe ϕ(t) Im ϕ(t) ∼ Im ϕ(t), (3.8)

we may drop the trigonometric functions from Eq. (3.7) and find

Hn ∼ n

π

∫ ηn

0
enRe ϕ(t)−mt ImG( et )dt, Vn ∼ 1

π

∫ π

0
enRe ϕ(ηn+iθ)−mηn dθ.

(3.9)
Thevertical contribution is evaluatedwith the help of aGaussian approximation around
θ = 0, which yields

Vn ∼ 1√
2πnRe ϕ′′(ηn)

enRe ϕ(ηn)−mηn . (3.10)

With Definition 2.8, we recognize in Eq. (3.10) the asymptotic expression from The-
orem 2.9 and obtain

Vn ∼ 1√
2πnσ 2

exp

⎛

⎝− N 2
n

2nσ 2 + N 3
n

n2

r−1∑

j=0

λ j

(Nn

n

) j

⎞

⎠ . (3.11)
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The evaluation of Hn is more involved. As a preliminary step, we express ImG( et )
through the Bromwich integral and find

Hn ∼ n

2π i

∫ ηn

0

(∫ 1/2+i∞

1/2−i∞
e�n(t,ζ ) dζ

)
dt (3.12)

with �n as in Eq. (2.18).
Step 4: Critical points of �n(t, ζ ) In order to apply aGaussian approximation to the

bivariate integral (3.12), we look for a critical points (tn, ζn) of �n with tn ∈ (0, ηn)
and ζn ∈ (0,∞). The gradient ∇�n(tn, ζn) vanishes if and only if

⎧
⎨

⎩

tn = q ′(ζn),

Re
(
ϕ′(tn) − ϕ′(0)

) = Nn − ζn

n
.

(3.13)

Since Re ϕ′(t) = μ + σ 2t + O(t2) as t ↘ 0, Eq. (3.13) implies

q ′(ζn) ∼ Nn − ζn

nσ 2 . (3.14)

We recognize the equation for the critical points of fn . Lemma 2.4 suggests the fol-
lowing: for Nn � N∗

n , there should be no critical point, for N∗
n � Nn � n, there

should be two. Let us focus on the latter case and label the critical points as (tn, ζn)
and (t ′n, ζ ′

n) with tn < t ′n . In view of Lemmas 2.4 and 2.7, we expect ζn ≈ xn and
ζ ′
n ≈ x ′

n , hence
tn ∼ q ′(Nn), ζn = Nn + O(N∗

n ) (3.15)

and ζ ′
n < x∗

n < ζn . The Hessian of �n is

Hess�n(t, ζ ) =
(
nRe ϕ′′(t) 1

1 −q ′′(ζ )

)
. (3.16)

Using again Lemma 2.7 and ζn ≈ xn , we expect

det Hess�n(tn, ζn) = −1 − (
1 + o(1)

)
nσ 2q ′′(ζn) = −1 + O

(N∗
n

Nn

)
< 0 (3.17)

thus (tn, ζn) is a saddle point. (More precisely, it is a saddle point of Re�n , but the
abuse of terminology is natural and not problematic in our context.) On the other hand,
ζ ′
n ≈ x ′

n < x∗
n with 1 + nσ 2q ′(x∗

n ) = 0 by definition of x∗
n , so we expect

det Hess�n(t
′
n, ζ

′
n) = −1 − (

1 + o(1)
)
nσ 2q ′′(ζ ′

n) > 0. (3.18)

Step 5: Gaussian approximation for Hn In order to evaluate the double integral
in Eq. (3.12), we use a good change of variables and a Gaussian approximation. Let
ζ(t) be the solution of q ′(ζ ) = t , so that ∂ζ �n(t, ζ ) = 0 if and only if ζ = ζ(t).
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It is convenient to deform the contour and integrate along Re ζ = ζ(t) instead of
Re ζ = 1/2. The integral becomes

Hn ∼ n

2π

∫ ηn

0

(∫ ∞

−∞
e�n(t,ζ(t)+is) ds

)
dt. (3.19)

A straightforward computation shows that Fn(t, s) = Sn(t, ζ(t) + is), a function of
two real variables t, s, has a critical point at (tn, 0) with positive definite Hessian

Hess Fn(tn, 0) =
(

βn 0
0 −∂2ζ �n(tn, ζn)

)
, βn = det Hess�n(tn, ζn)

∂2ζ �n(tn, ζn)
, (3.20)

see Lemma B.1. Fn : (0, ηn) × R → C has another critical point at (t ′n, 0), with
negative determinant of the Hessian; later, we show that it does not contribute to the
integral. The evaluation of Hn is concluded by replacing the double integral (3.19) by
the integral of the Gaussian approximation around (tn, 0) which yields

Hn ∼ n

2π

√
(2π)2

det Hess Fn(tn, 0)
eFn(tn ,0) = n√| det Hess�n(tn, ζn)| e

�n(tn ,ζn) .

(3.21)
The argument leading to Eqs. (2.22) and (3.17) show

Hn ∼ n√
1 − nσ 2q ′′(xnr )

e− fnr (xnr ) . (3.22)

4 Analytic Continuation: Lindelöf and Bromwich Integrals

Here, we take care of steps 1 and 2, starting from Assumption 2.2. For concreteness’
sake we write down the results for b = 1/2; they apply for general b with straightfor-
ward modifications. Define

	(w) = − 1

2π i

∫ 1/2+i∞

1/2−i∞
p(ζ )wζ π

sin πζ
dζ (w ∈ C\(−∞, 0]), (4.1)

the Lindelöf integral with symbol p(ζ ).

Proposition 4.1 [11]

(a) 	(w) is analytic in the slit plane C\(−∞,−1].
(b) In the unit disk |w| ≤ 1,

	(w) =
∞∑

k=1

p(k)(−w)k = G(−w).
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A detailed proof and many additional properties of 	(w) can be found in [8]. Propo-
sition 4.1 shows right away that G(z) = 	(−z) has an analytic continuation from
the unit disk to the open slit plane C\[1,∞). We use the same letter G(z) for the
analytic continuation, and set ϕ(t) = LogG( et ) with Log the principal branch of the
logarithm, and Im t ∈ [0, 2π). We prove the following additional properties of G(z)
and ϕ(t).

Theorem 4.2 (a) The boundary value G( et ) = limε↘0 G( et + iε) exists for all
t ∈ R and is a smooth function of t ∈ R.

(b) The imaginary part ImG( et ), t ≥ 0 is given by the Bromwich integral (3.2).
(c) ϕ(t) is well-defined and smooth in a neighborhood of the origin; the derivatives

κ j = ϕ( j)(0) are real. As t → 0 in the strip Im t ∈ [0, 2π), we have

ϕ(t) = LogG( et ) =
r∑

j=1

κ j
t j

j ! + O(tr+1).

to arbitrarily high order r .

In (c) z = et is allowed to approach the slit [1,∞) as fast as we like; we may even
take t real. Because the coefficients κ j are real, we find in particular that ImG( et )
vanishes faster than any power of t as t → 0, t ∈ R.

Proof of Theorem 4.2 For u ∈ C in the closed strip Im u ∈ [−π, π ], define

L(u) = − 1

2π i

∫ 1/2+i∞

1/2−i∞
p(ζ ) eζu π

sin πζ
dζ. (4.2)

When Im u is in the open strip Im u ∈ (−π, π), we have w = eu ∈ C\(−∞, 0] and
L(u) = 	( eu ). Along the vertical line Re ζ = 1/2, we have

∣∣∣
exp(ζu)

sin(πζ )

∣∣∣ = 2 eRe u/2 exp(−sIm u)

exp(πs) + exp(−πs)
≤ 2 eRe u/2

(
ζ = 1

2
+ is

)
(4.3)

By Assumption 2.2(ii), since ζ k p(ζ ) is integrable along Re ζ = 1/2. Eq. (4.3) then
shows that the integral defining L(u) is absolutely convergent, and it stays abso-
lutely convergent if we replace the symbol p(ζ ) by ζ k p(ζ ). Standard arguments for
parameter-dependent integrals then show that L(u) is continuous on the closed strip,
differentiable in the open strip, and we may exchange differentiation, limits, and inte-
gration, which shows that the restriction of L to the boundaries Im u = ±π yield
smooth functions.

When z → et ∈ [1,∞) along Im z > 0, we have w = −z → − et along
Imw < 0. Thus, we may write w = eu with Re u → t and Im u = argw ↘ −π .
Therefore,

lim
ε↘0

G( et + iε) = L(t − iπ) = i
∫ ∞

−∞
p
( 1
2 + is

)
e(1/2+is)t exp(πs)

exp(πs) + exp(−πs)
ds.

(4.4)
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This proves the existence of the limit and, in view of the above mentioned properties
of L(u), the smoothness as a function of t . The complex conjugate is

−i
∫ ∞

−∞
p
( 1
2 − is

)
e(1/2−is)t exp(πs)

exp(πs) + exp(−πs)
ds

= i
∫ ∞

−∞
p
( 1
2 + is

)
e(1/2+is)t exp(−πs)

exp(πs) + exp(−πs)
ds. (4.5)

Therefore,

ImG( et ) = 1

2

∫ ∞

−∞
p
( 1
2 + is

)
e(1/2+is)t ds = 1

2i

∫ 1/2+i∞

1/2−i∞
p(ζ ) etζ dζ.

This proves (b). For (c), consider first real t ∈ R. We have already checked (a) hence
G( et ) is in C∞(R). It is real and strictly positive for t ≤ 0 (this follows from the
series representation and p(k) > 0), and non-zero though possibly complex-valued for
sufficiently small t > 0. Therefore, ϕ(t) = logG( et ) is well-defined and smooth in
some interval (−∞, δ), δ > 0, and real-valued for t ≤ 0. In particular, the derivatives
κ j = ϕ( j)(0) exist and are real, and ϕ(t) can be approximated to arbitrarily high order
by Taylor polynomials. The extension to complex t , Im t ∈ [0, 2π), follows again
from the smoothness of L(u) in the closed strip Im u ∈ [−π, π ]. ��

Theorem 4.2(b) has an interesting consequence. Eq. (3.2) is, up to a factor π , the
formula for the inverse Laplace transform, therefore

p(λ) = π

∫ ∞

0
e−tλ ImG( et )dt (Re λ > 0). (4.6)

In the special case of stretched exponential weights, we can draw on an extensive
literature as exp(−λα) is known to be the Laplace transform of a probability density,
an α-stable law [16]. For α = 1/2 [4]

ImG( et ) = c
√

π

2t3/2
e−1/(4t) (t ≥ 0). (4.7)

For general α ∈ (0, 1), we have instead [10, Theorem 2.4.6]

ImG( et ) ∼ c

2

√
2π

(1 − α)α−1/(1−α)

exp
(−(1 − α)

(
α
t

)α/(1−α))

t (2−α)/(2−2α)
(4.8)

as t ↘ 0. This is proven in [10] by applying a steepest descent approach to the
Bromwich integral. For general weights, Eq. (4.8) is generalized as follows.

Assume that t < limx↘a |q ′′(x)|. By Assumption 2.1, q ′′ is strictly increasing and
negative on (a,∞). By Eq. (2.6), we have q ′′(x) → 0 as x → ∞. Consequently,
there exists a uniquely defined ζ(t) that solves q ′(ζ(t)) = t . We define

ψ(t) = tζ(t) − q(ζ(t)) (4.9)
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and note the relations

ψ ′(t) = ζ(t), ψ ′′(t) = 1

q ′′(ζ(t))
, (4.10)

so ψ(t) is monotone increasing and strictly concave. Since −ψ(−t) is the Legendre
transform of the convex function −q(x), it comes as no surprise that Assumption 2.1
on large x translates into information on small t .

Lemma 4.3 The following holds:

(a) limt↘0 tψ ′(t)/ log t = ∞.

(b) −ψ ′′(t) ≥ cψ ′(t)
t for some c > 0 and all sufficiently small t > 0.

(c) 0 ≤ ψ ′′′(t) ≤ C |ψ ′′(t)|
t for some C > 0 and all sufficiently small t > 0.

The lemma has been proven in [14, Lemma 2.2].

Theorem 4.4 As t ↘ 0,

ImG( et ) ∼ 1

2

√
2π |ψ ′′(t)| eψ(t) .

Proof By Theorem 4.2(b), we may start from the Bromwich representation of
ImG( et ). The analyticity of q(ζ ) allows us to replace the contour Re ζ = 1/2 by
� = �1 ∪ �2 where

�1 = {ζ ∈ C | |ζ | = ζ(t), Re ζ ≥ 1/2}, �2 = {ζ ∈ C | |ζ | > ζ(t), Re ζ = 1/2}.
(4.11)

To lighten notation, set r = ζ(t) and suppress the t- and r -dependence from the
notation. Let θ0 = arcsin(1/2r) and notice θ0 ↗ π/2 as r → ∞ (t ↘ 0).

For small θ , we have

t r eiθ − q(r eiθ ) = ψ(t) − 1

2
r2q ′′(r)( eiθ − 1)2 + O

(
r3q ′′′(r)( eiθ − 1)2

)

= ψ(t) − 1

2
r2|q ′′(r)|(θ2 + O(θ3)) (4.12)

The estimate is uniform in r = ζ(t) by Assumption 2.3(iii). Let ε(r) ↘ 0 with
ε(r)2r2q ′′(r)/ log r → ∞ (this is possible by Assumption 2.1), then

1

2i

∫ ε(r)

−ε(r)
exp

(
tr eiθ − q(r eiθ )

)
ir eiθ dθ ∼ 1

2

√
2π |ψ ′′(t)| eψ(t) . (4.13)

As we veer away from r = ζ(t) along �1, the real part of ζ t −q(ζ ) decreases. Indeed,
for θ ∈ (0, π/2)

d

dθ
Re

(
tr eiθ − q(r eiθ )

) = Re
(
iζ(t − q ′(ζ ))

)∣∣∣
ζ=r eiθ

= −Im
(
ζq ′(r) − ζq ′(ζ )

)∣∣∣
ζ=r eiθ

≤ 0. (4.14)
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At the very end, we have used Assumption 2.3(ii) It follows that

∣∣∣∣
1

2i

∫ θ0

ε(r)
exp

(
tr eiθ − q(r eiθ )

)
ir eiθ dθ

∣∣∣∣

≤ rπ

4
exp

(
ψ(t) − 1

2
r2|q ′′(r)|ε(r)(1 + o(1))

)
= o

(
exp(ψ(t))

)

Taking complex conjugates, we obtain a similar estimate for the integral from −θ0 to
−ε(r). Together with (4.13), we obtain

1

2i

∫

�1

etζ−q(ζ ) dζ ∼ 1

2

√
2π |ψ ′′(t)| eψ(t) . (4.15)

It remains to estimate the contribution from �2. Because of the monotonicity (4.14),
we have

Re (tζ0 − q(ζ0)) ≤ ψ(t) − 1

2
r2|q ′′(r)|ε(r)2(1 + o(1)) (4.16)

Assumption 2.3(ii) ensures that

∣∣∣
∫

�2

etζ−q(ζ ) dζ
∣∣∣ ≤ exp

(
Re

[
tζ0 − q(ζ0)

] + O(log r))
)

= o
(
exp(ψ(t))

)
. (4.17)

��

5 Critical Point and Gaussian Approximation

Here, we prove Lemmas 2.4–2.7 and Proposition 2.12 and we address steps 4 and 5
of the proof strategy.

5.1 Variational Analysis of fn(x): Critical Scales

Proof of Lemma 2.4 We treat the case a = 0. Under Assumption 2.1(i), q ′ is strictly
convex and decreasing. Therefore

f ′
n(x) = q ′(x) − Nn − x

nσ 2

≥ q ′(x∗
n ) + q ′′(x∗

n )(x − x∗
n ) − Nn − x

nσ 2 = N∗
n − Nn

nσ 2

(5.1)

with equality if and only if x = x∗
n . If Nn < N∗

n , we obtain f ′
n(x) > 0 on (0,∞) and

parts (a) and (b) of the lemma follow right away.
If Nn > N∗

n , then f ′
n(x

∗
n ) = (N∗

n − Nn)/(nσ 2) < 0 and limx→∞ f ′
n(x) = ∞, so

by the intermediate value theorem f ′
n has at least one zero in (x∗

n ,∞). On the other
hand

f ′′
n (x) = q ′′(x) + (nσ 2)−1 = q ′′(x) − q ′′(x∗

n ) > 0 on (x∗
n ,∞) (5.2)
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so f ′
n is strictly increasing and f ′

n has exactly one zero xn in (x∗
n ,∞), moreover

fn(xn) = min(x∗
n ,∞) fn . Since q ′(xn) > 0 by Assumption 2.1 and q ′(xn) = (Nn −

xn)/(nσ 2), we must have xn < Nn . This proves the first part of (c).
If in addition to Nn > N∗

n , we have lim supn→∞ Nn/(nσ 2) < limx↘a q ′(x), then
limx↘a f ′

n(x) > 0. We have already observed that f ′
n(x

∗
n ) < 0. By the intermediate

value theorem, f ′
n has at least one zero x

′
n in (0, x∗

n ). Since f ′′
n (x) = q ′′(x)−q ′′(x∗

n ) <

0 on (0, x∗
n ), the zero is unique and corresponds tomaximizer. This completes the proof

of (c). The proof of (d) is similar to (c) and therefore omitted. ��
Proof of Lemma 2.5 We treat the case a = 0. Write fn(x) = In(x, Nn) with
In(x, y) = q(x) + [y − x]2/[2nσ 2]. For y > N∗

n , let xn(y) > x∗
n > x ′

n(y) be
the solutions of ∂x In(x, y) = 0, with x ′

n(y) well-defined for Nn ≤ nσ 2 sup q ′ only.
Notice that x �→ In(x, y) is increasing in (0, x ′

n(y)), decreasing in (x ′
n(y), xn(y)),

and increasing in (xn(y),∞). We have

d

dy

[
In(xn(y), y) − I (0, y)

] = y − xn(y)

nσ 2 − y

nσ 2 = − xn(y)

nσ 2 < 0. (5.3)

As y ↘ N∗
n at fixed n, a careful examination of the proof of Lemma2.4 shows xn(y) ↘

x∗
n and x ′

n(y) ↗ x∗
n (y), hence In(xn(y), y) → In(x∗

n , N
∗
n ). But x �→ In(x, N∗

n ) is
strictly increasing on (0,∞) because for Nn = N∗

n , ∂x In(·, Nn) = f ′
n(x) ≥ 0 by

Eq. (5.1), hence In(x∗
n , N

∗
n ) > In(0, N∗

n ) and by continuity

lim
y↘N∗

n

[
In(xn(y), y) − I (0, y)

]
> 0. (5.4)

Assumption 2.1 implies that q(y) = o(y) as y → ∞. It follows that

lim
y→∞

[
In(y, y) − I (0, y)

] = lim
y→∞

[
q(y) − y2

2nσ 2

]
= −∞. (5.5)

Equations (5.3)–(5.5) guarantee the existence and uniqueness of a solution y = N∗∗
n to

the equation In(xn(y), y) = I (0, y), and (a)–(c) follow with the observation fn(xn)−
fn(0) = [In(xn(y), y) − In(0, y)]|y=Nn . ��
Proof of Lemma 2.6 As noted after Assumption 2.1, we have limx→∞ x2q ′′(x) =
−∞, moreover from the definition (2.10) of x∗

n and the observation x∗
n → ∞ we get

1 = lim
n→∞ nσ 2|q ′′(x∗

n )| � nσ 2

(x∗
n )

2 (5.6)

hence x∗
n � √

n. The inequality x∗
n < N∗

n follows from the definition 2.10 of N∗
n and

the positivity of q ′. The inequality N∗
n < N∗∗

n holds true by definition of N∗∗
n . By

Assumption 2.1(v) there exists C > 0 such that q(x) ≤ Cxα for all sufficiently large
x . Fix C ′ > C and Nn ≥ (2C ′nσ 2)1/(2−α). Then, for large n,

q(Nn)

Nn/(2nσ 2)
≤ 2nσ 2CNα−2

n ≤ C

C ′ < 1. (5.7)
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x
x′

nx∗
n N∗

n

q′(x)

x

q′(x)

N∗
nNn

N∗
n

nσ2

Nn
nσ2

N∗
n

nσ2

x

q′(x)

N∗
n Nn

xn

(c)(b)(a)

N∗
n

nσ2

Nn
nσ2

Fig. 3 Solutions to q ′(x) = (Nn − x)/(nσ 2) (= critical points of fn ) as in Lemma 2.7. a Nn < N∗
n : no

solutions. b Nn = N∗
n : one solution. c Nn > N∗

n : two solutions

Write C/C ′ = 1 − ε. It follows that fn(Nn) = q(Nn) < (1 − ε) Nn
nσ 2 ≤ (1 − ε)(1 +

o(1)) fn(a), and a fortiori min fn ≤ fn(Nn) < fn(a), which shows Nn ≥ N∗∗
n . This

proves N∗∗
n = O(n1/(2−α)) and completes the proof of the first part of the lemma.

Next suppose by contradiction that N∗
n /x∗

n → 1. Then by Eq. (2.10) we must
have nσ 2q ′(x∗

n )/x
∗
n → 0. Since x∗

n → ∞, Assumption 2.1 yields nσ 2q ′′(x∗
n ) → 0,

contradicting the definition of x∗
n . Similarly, the assumption N∗

n /x∗
n → ∞ leads to

nσ 2q ′′(x∗
n ) → ∞, contradicting again the definition of x∗

n . So N∗
n /x∗

n stays bounded
away from 1 and from ∞. ��
Proof of Lemma 2.7 Remember q ′(x∗

n ) = [N∗
n − x∗

n ]/[nσ 2] by definition of N∗
n , and

q ′(xn) = [Nn−xn]/[nσ 2] by definition of xn . Since q ′ is strictly decreasingwe deduce

Nn − xn
nσ 2 = q ′(xn) < q ′(x∗

n ) = N∗
n − x∗

n

nσ 2 <
N∗
n

2σ 2 , (5.8)

so Nn − xn ≤ N∗
n (see Fig. 3). Since q ′ is strictly convex, we have q ′(x∗

n ) > q ′(xn) +
q ′′(xn)(x∗

n − xn) hence

q ′′(xn) >
q ′(xn) − q ′(x∗

n )

xn − x∗
n

= (Nn − xn) − (N∗
n − x∗

n )

nσ 2(xn − x∗
n )

= O(N∗
n )

nσ 2(Nn + O(N∗
n ))
(5.9)

We also know that q ′′(xn) < 0, so we obtain

f ′′
n (xn) = q ′′(xn) + 1

nσ 2 = 1

nσ 2

(
1 + O

(N∗
n

Nn

))
. (5.10)

��
For the proof of Theorem 2.9 in the case Nn ∼ N∗

n , we need the following.

Lemma 5.1 Let Nn = N∗
n . We have

fn(x
∗
n ) − (N∗

n )2

2nσ 2 ≥ ε
(N∗

n )2

2nσ 2 . (5.11)

for some ε > 0 and all sufficiently large n,
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Proof Assume a = 0 and q(0) = 0. By Lemma 2.5, we already know fn(x∗
n ) −

fn(0) > 0, we prove fn(x∗
n ) − fn(0) > ε fn(0). Since f ′

n(x
∗
n ) = 0 for Nn = N∗

n ,

f ′
n(x) =

∫ x

x∗
n

f ′′
n (y)dy = 1

nσ 2

∫ x∗
n

x

(
nσ 2|q ′′(y)| − 1

)
dy. (5.12)

For y ≥ x∗
n/2, the integrand stays bounded away from zero, hence

f ′
n(x) ≥ c(x∗

n − x)

nσ 2 (5.13)

for all x ≥ x∗
n/2 and some c > 0. Then,

fn(x
∗
n ) − fn(0) =

∫ x∗
n

0
f ′
n(y)dy ≥ cx∗

n
2

8nσ 2 (5.14)

and the statement follows from N∗
n = O(x∗

n ) (Lemma 2.6) and fn(0) = (N∗
n )2

2nσ 2 (1 +
o(1)). The proof for a > 0 is based on a similar estimate of fn(x∗

n ) − fn(2a) and
therefore omitted. ��
Proof of Proposition 2.12 Fix r ∈ N0. We have

f ′
nr (x) = f ′

n(x) + O

((
Nn − x

nσ 2

)2
)

. (5.15)

Clearly, f ′
nr (Nn) = q ′(Nn) > 0. Fix δ ∈ (0, ε) and x ∈ (x∗

n , (1 + δ)x∗
n ). Remember-

ing (2.10) and the monotonicity of q ′, we obtain

f ′
nr (x) ≤ N∗

n − x∗
n

nσ 2 − (1 + o(1))
Nn − (1 + δ)x∗

n

nσ 2

= − 1

nσ 2

(
Nn + o(Nn) − N∗

n − δx∗
n

) ≤ − 1

nσ 2

(
(1 + o(1))εN∗

n − δx∗
n

)

(5.16)
which is eventually negative because of x∗

n ≤ N∗
n and δ < ε. It follows that f ′

nr does
indeed have a zero xnr which lies between (1+ δ)x∗

n and Nn . On (x∗
n , (1+ δ)x∗

n ) fnr
is strictly decreasing by (5.16), on ((1 + δ)x∗

n , Nn) the second derivative satisfies

f ′′
nr (x) = 1

nσ 2

(
1 − nσ 2|q ′′(x)| + O

(
Nn

n

))
(5.17)

which stays bounded away from 0, hence fnr is strictly convex. It follows that xnr is
the unique zero of f ′

nr and the maximizer of fnr in (x∗
n , Nn). Moreover,

(1 + o(1))
Nn − xnr
nσ 2 = q ′(xnr ) ≤ q ′(x∗

n ) = N∗
n − x∗

n

nσ 2 (5.18)
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hence xnr = Nn − (1+ o(1))nσ 2q ′(xnr ) = Nn + O(N∗
n ). The asymptotic expression

for fnr (xnr ) is easily checked. ��

5.2 Critical Points

We look for critical points (tn, ζn) with tn ↘ 0 and ζn ∈ (a,∞) of

�n(t, ζ ) = −q(ζ ) + nϕ(t) − mt + tζ (5.19)

(remember m = μn+ Nn). Since our contour integrals involve integrals over z = et ,
it is convenient to work with functions of a single variable t : for t < limx→a |q ′′(x)|,
let

�n(t) = �n(t, ζ(t)) = nϕ(t) − mt + ψ(t). (5.20)

where ζ(t) is the solution of q ′(ζ(t)) = t as on p.14. Then, (t, ζ ) is a critical point of
�n(t, ζ ) if and only if ζ = ζ(t) and � ′

n(t) = 0. So instead of looking for bivariate
critical points, we may look for zeros of � ′

n(t) in (0, sup |q ′′(x)|). For later purpose,
we note the relations

� ′
n(t) = nϕ′(t) − m + ζ(t) = −(Nn − ζ(t)) + nσ 2t (1 + O(t)) (5.21)

� ′′
n (t) = nϕ′′(t) + ψ ′′(t) = nσ 2(1 + O(t)) + 1

q ′′(ζ(t))
, (5.22)

with ψ(t) defined in (4.9). The variable t and the analysis of �n are in some sense
dual to the variable x (or ζ ) and the variational problem fn(x) = min analyzed in
Sect. 5.1. The analysis becomes more involved, however, because we need to take into
account correction terms from

∑
j≥3 κ j t j/j !.

Lemma 5.2 (Inflection point of �n) Let δ > 0 such that inf(0,δ) ϕ′′(t) > 0. Then,
for all sufficiently large n, �n has an inflection point t∗n ∈ (0, δ). Any inflection point
satisfies t∗n ∼ q ′(x∗

n ), and�n is concave below the smallest inflection point and convex
above the largest inflection point.

If the inflection point is unique, then�n is concave on (0, t∗n ) and (t∗n , δ). In general, we
do not know whether the inflection point is unique; however, the asymptotic behavior
t∗n ∼ q ′(x∗

n ) is uniquely determined, and all statements below hold for every inflection
point t∗n .

Remark 4 It follows that t∗n is of the order of N∗
n /n: fromLemma 5.2 and the definition

of N∗
n , we have t

∗
n ∼ N∗

n −x∗
n

nσ 2 , and then Lemma 2.6 yields

δ
N∗
n

n
≤ t∗n ≤ C

N∗
n

n
. (5.23)

Proof of Lemma 5.2 As a preliminary observation, we note that any solution t∗n of
� ′

n(t) = 0 converges to zero: this is because−ψ ′′(t∗n ) = nϕ′′(t) ≥ n inf(0,δ) ϕ′′ → ∞.
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As t ↘ 0 at fixed n, we have ϕ′′(t) → σ 2 andψ ′′(t) → −∞ hence� ′′
n (t) → −∞.

On the other hand, we may choose εn in such a way that εn ↘ 0 and � ′′
n (εn) → ∞:

indeed, ψ ′′(q ′(x∗
n )) = 1/q ′′(x∗

n ) = −nσ 2 by definition of x∗
n , so choosing εn �

q ′(x∗
n ) in such a way that |ψ ′′(εn)| � |ψ ′′(q ′(x∗

n ))| = nσ 2 we find � ′′
n (εn) = (1 +

o(1))nσ 2+o(nσ 2) → ∞. It follows from the intermediate value theorem that� ′′
n (t) =

0 has a solution t∗n in (0, εn). It satisfies

q ′′(x∗
n )

q ′′(ζ(t∗n ))
= −ψ ′′(t∗n )

nσ 2 = ϕ′′(t∗n )

σ 2 = 1 + O(t∗n ) → 1. (5.24)

Assumption 2.1(iv) and its consequence (2.5) imply that ζ(t∗n )/x∗
n → 1 and t∗n =

q ′(ζ(t∗n )) ∼ q ′(x∗
n ). ��

� ′
n(t) is positive for small t and decreasing on (0, t∗n ) and increasing on (t∗n , δ). Define

ζ ∗
n = ζ(t∗n ) and notice ζ ∗

n ∼ x∗
n from the proof of the previous lemma.

For Nn � n, let ηn ∼ Nn/(nσ 2) be the solution of (3.4). Notice � ′
n(ηn) =

ζ(ηn) → ∞.

Lemma 5.3 Let δ > 0 be as in Lemma 5.2, ε > 0, and t∗n an inflection point of �n.
Let Nn → ∞with (1+ε)N∗

n ≤ Nn � n. Then, for sufficiently large n,� ′
n has exactly

two zeros in (0, δ), one zero tn ∈ (0, t∗n ) and another t ′n ∈ (t∗n , ηn). Set ζn := ζ(tn).
We have

0 ≤ Nn − ζn = O(N∗
n ),

lim supn→∞ tn/t∗n < 1, lim infn→∞ ζn/x∗
n > 1, and lim inf t ′n/ηn > 0.

Remark 5 When Nn � N∗
n , we use Eq. (2.4), Lemmas 2.6 and 5.2 and find

ζn ∼ Nn, tn = q ′(ζn) ∼ q ′(Nn) � q ′(x∗
n ) ∼ t∗n = O

(N∗
n

n

)
(5.25)

hence tn = o(t∗n ). When Nn = O(N∗
n ), we have instead c−1t∗n ≤ tn ≤ c t∗n for some

c > 0 and all sufficiently large n: The upper bound is part of Lemma 5.3. For the lower
bound, we note that tn = q ′(ζn) ≥ q ′(Nn) because q ′ is decreasing and ζn ≤ Nn .
Since Nn is of the order of N∗

n , Eq. (2.4) shows that q
′(Nn) is of the order of q ′(N∗

n )

which in turn is of the order of q ′(x∗
n ) ∼ t∗n .

Proof of Lemma 5.3 We check first that t∗n < ηn . With C ≥ 1 as in Lemma 2.6, we
have

t∗n ∼ q ′(x∗
n ) = N∗

n − x∗
n

nσ 2 ≤ (1 − C−1)
N∗
n

nσ 2 (5.26)

so

t∗n /ηn ≤ (1 + o(1))(1 − C−1)N∗
n /Nn ≤ (1 + o(1))

1 − C−1

1 + ε
(5.27)
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is bounded away from 1. As t → 0 at fixed n, � ′
n(t) ∼ ζ(t) → ∞, and as n → ∞,

� ′
n(ηn) → ∞. Furthermore,

� ′
n(t

∗
n ) = −(Nn − ζ ∗

n ) + (1 + o(1))nσ 2q ′(ζ ∗
n )

= −(
Nn − (1 + o(1))x∗

n

) + (1 + o(1))nσ 2q ′(x∗
n )

= −(
Nn − (1 + o(1))x∗

n

) + (1 + o(1))
(
N∗
n − x∗

n

)

= −(Nn − N∗
n ) + o(N∗

n ) → −∞.

(5.28)

The intermediate value theorem proves the existence of a zero tn ∈ (0, t∗n ) and another
zero t ′n ∈ (t∗n , ηn).

Suppose by contradiction that tn/t∗n → 1. Then, the identities tn = q ′(ζn), t∗n =
q ′(ζ ∗

n ) and Eq. (2.4) imply ζn ∼ ζ ∗
n ∼ x∗

n and an estimate analogous to (5.28) shows
� ′

n(tn) → −∞, in contradiction with � ′
n(tn) = 0. It follows that tn/t∗n and ζn/x∗

n are
bounded away from 1. In addition, tn ≤ t∗n = O(N∗

n /n) and

Nn − ζn ∼ nσ 2tn = O(N∗
n ). (5.29)

For the lower bound of t ′n , we use t ′n ≥ t∗n ∼ q ′(x∗
n ) and Assumption 2.1 to get

ζ ′
n ≤ (1 + o(1))x∗

n where q ′(ζ ′
n) = t ′n . Since t ′n = O(ηn) → 0, � ′

n(t
′
n) = 0 together

with (5.21) yields

t ′n ∼ Nn − ζ ′
n

nσ 2 ∼ ηn

(
1 − ζ ′

n

Nn

)
≥ ηn

(
1 − N∗

n

Nn

)
(5.30)

and Nn ≥ (1 + ε)N∗
n implies lim inf t ′n/ηn > 0. Notice that, in view of (5.27), we

have a fortiori lim inf t ′n/t∗n > 0.
We have actually shown that for every inflection point t∗n , t/t∗n ≤ 1 stays bounded

away from 1. In particular, in case of non-uniqueness of t∗n , we may choose t∗n as the
smallest inflection point of�n . Then,� ′

n is strictly increasing on (0, t∗n ); consequently,
the zero tn is unique. A similar argument shows that t ′n is unique. ��
When lim infn→∞ Nn/n > 0, the sequence ηn is either no longer defined or it does
not converge to zero. The previous lemma is modified as follows.

Lemma 5.4 Assume Nn → ∞ with lim inf Nn/n > 0. Then, there exists δ0 > 0 such
that for large n, �n has exactly one critical point tn in (0, δ0). The critical point lies
in (0, t∗n ), and it satisfies 0 ≤ Nn − ζ(tn) = O(N∗

n ).

Proof The existence and uniqueness of a critical point in (0, t∗n ) as well as the
properties of ζ(tn) are proven as in the previous lemma. Fix δ0 > 0 such that
ϕ′(δ0) ≤ μ + 1

2 lim inf(Nn/n) =: μ + ε/2. Then

� ′
n(δ0) = −n

(
μ + Nn

n
− ϕ′(δ0)

)
+ ζ(δ0) ≤ −n

(ε

2
+ o(1)

)
+ ζ(δ0) → −∞.

(5.31)
It follows that � ′

n < 0 on (t∗n , δ0). ��
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5.3 Hessians

Let tn ∈ (0, t∗n ) be the critical point of�n(t), and ζn = ζ(tn). Thus, (tn, ζn) is a critical
point of �n(t, ζ ). Lemma B.1 shows

� ′′
n (tn) = −det Hess�n(tn, ζn)

|q ′′(ζn)| = −1 − nRe ϕ′′(tn)|q ′′(ζn)|
|q ′′(ζn)| . (5.32)

Lemma 5.5 Assume Nn → ∞ with lim infn→∞(Nn/N∗
n ) > 1 and let (tn, ζn) be the

unique critical point of �n in (0, t∗n ) × (a,∞).

(a) If Nn � N∗
n , then det Hess�n(tn, ζn) → −1.

(b) If Nn = O(N∗
n ), then det Hess�n(tn, ζn) = −(1 − nσ 2|q ′′(ζn)|) + o(1) and it

stays bounded away from zero.

Proof (a) If Nn � N∗
n , then byLemmas 5.3 and 5.4,we have ζn = Nn+O(N∗

n ) ∼ Nn ;
hence, in particular ζn � N∗

n ≥ x∗
n . Exploiting the monotonicity and the convexity of

q ′, we have

0 ≥ q ′′(ζn) ≥ q ′(ζn) − q ′(x∗
n )

ζn − x∗
n

= O(N∗
n /(nσ 2))

Nn(1 + o(1))
= − 1

nσ 2 O
(N∗

n

Nn

)
(5.33)

from which we get

det Hess�n(tn, ζn) = −1 + nσ 2(1 + O(tn))|q ′′(ζn)| = −1 + O
(N∗

n

Nn

)
→ −1.

(5.34)
(b) If Nn = O(N∗

n ): By Lemma 5.3, ζn ≥ (1 + ε)x∗
n for some ε > 0. Consequently

|q ′′(ζn)| ≤ (1− δ)|q ′′(x∗
n )| = (1− δ)/(nσ 2) for some δ > 0 and large n, from which

we deduce that

1 − nRe ϕ′′(tn)|q ′′(ζn)| ≥ 1 − (1 + O(tn))(1 − δ) = 1 − δ + O(tn), (5.35)

in particular the expression stays bounded away from zero. We also have

det Hess�n(tn, ζn) = −(1 − nσ 2|q ′′(ζn)|) + o(tn)nσ 2|q ′′(ζn)| (5.36)

Since ζn > x∗
n , the estimate (5.33) still holds true and

tnnσ 2|q ′′(ζn)| = tnO
(N∗

n

Nn

)
= O(tn) → 0. (5.37)

��
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5.4 Gaussian Approximation

Next we address the Gaussian approximation for the evaluation of Hn . Because of
Theorem 4.4, we need not deal with a bivariate integral and instead may use

1

π

∫ εn

0
enRe ϕ(t)−mt ImG( et )dt ∼ 1√

2π

∫ εn

0

√|ψ ′′(t)| e�n(t) dt (5.38)

as n → ∞ and εn ↘ 0. Remember that �n(tn) = �n(tn, ζn) and from Eq. (5.32) and
Lemma 5.5,

ψ ′′
n (tn)

� ′′
n (tn)

= 1

1 − nσ 2|q ′′(ζn)| (5.39)

with a denominator bounded away from zero. The following technical lemma helps
estimate the prefactor

√|ψ ′′(t)|. Set

Rn(t) := �n(t) + log
√|ψ ′′(t)|. (5.40)

Lemma 5.6 Let Nn → ∞ with lim inf(Nn/N∗
n ) > 1 and tn ∈ (0, t∗n ) the zero of

� ′
n(t) from Lemma 5.3. Then, R′

n has at least one zero sn ∈ (0, tn). Moreover, there
exists a sequence δn ↘ 0 such that every such zero lies in ((1 − δn)tn, tn).

Proof As t ↘ 0 at fixed n, using Lemma 4.3, we have

R′
n(t) = � ′

n(t) + 1

2

ψ ′′′(t)
ψ ′′(t)

= n
(
Re ϕ′(t) − μ

) − Nn + ψ(t) + 1

2

ψ ′′′(t)
ψ ′′(t)

= n(σ 2t + O(t2)) − Nn + ψ ′(t) + O(1/t)

= −Nn + o(1) + (1 + o(1))ψ ′(t) → ∞, (5.41)

hence, t �→ Rn(t) is initially increasing. At t = tn , we have

R′
n(tn) = � ′

n(tn) + 1

2

ψ ′′′(tn)
ψ ′′(tn)

= 1

2

ψ ′′′(tn)
ψ ′′(tn)

< 0. (5.42)

The intermediate value theorem guarantees the existence of a zero sn of R′
n . Set

yn := ψ ′(sn) + 1

2

ψ ′′′(sn)
ψ ′′(sn)

. (5.43)

In view of Lemma 4.3, we have yn ∼ ψ ′(sn) and by Eqs. (2.4) and (4.10), q ′(yn) ∼ sn .
From sn ≤ tn ≤ t∗n andLemma2.7we get that yn is larger than x∗

n and actually bounded
away from it. By the definition of sn ,

0 = n
(
Re ϕ′(sn) − μ

) − Nn + yn = nσ 2sn(1 + O(sn)) − [Nn − yn] (5.44)
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hence
Nn − yn
nσ 2 ∼ sn ∼ q ′(yn). (5.45)

Let xn ∈ (x∗
n , Nn) be the solution of q ′(xn) = (Nn − xn)/(nσ 2). Now

d

dy

(
q ′(y) − Nn − y

nσ 2

)
= q ′′(y) + 1

nσ 2 = 1 − nσ 2|q ′′(y)|
nσ 2 (5.46)

and nσ 2|q ′′(y)| stays bounded away from 1 when y ≥ (1 + δ)x∗
n , we find that for

some c > 0, we have ∣∣∣q ′(yn) − Nn − y

nσ 2

∣∣∣ ≥ c|yn − xn|
nσ 2 (5.47)

hence yn − xn = o(Nn − yn) = o(Nn). If Nn � N∗
n , Lemma 2.7 says xn ∼ Nn and

we deduce yn − xn = o(xn). If Nn = O(N∗
n ), we use xn ≥ x∗

n in conjunction with
Lemma 2.6 and find yn − xn = o(N∗

n ) = o(x∗
n ) = o(xn).

Thus, we have checked that yn ∼ xn , which in turn yields sn ∼ q ′(xn). An entirely
similar argument shows tn ∼ q ′(xn), so we must have sn ∼ tn . This holds for every
zero in (0, tn), in particular the smallest one, and the lemma follows. ��
Lemma 5.7 Let Nn → ∞ with lim inf(Nn/N∗

n ) > 1 and Nn = O(N∗
n ). Then,

∫ t ′n

0

√|ψ ′′(t)| e�n(t) dt ∼
√

2π

1 − nσ 2q ′′(ζn)
e�n(tn) .

Proof By Lemmas 5.2 and 5.3, �n is increasing on (0, tn) and decreasing on (tn, t ′n).
We use a Gaussian approximation to �n around tn and adapt [14, Lemma 2.1]. First,
we check that the window (tn −εn, tn +εn) contributing most to the Gaussian integral
fits amply into (0, t ′n), i.e.,

εn := 1√|� ′′
n (tn)|

= o
(
min(tn, t

′
n − tn)

)
. (5.48)

By Lemma 5.3, we have tn ≤ (1 − δ)t∗n ≤ (1 − δ)t ′n for some δ ∈ (0, 1), hence
t ′n − tn ≥ δtn and

min(tn, t
′
n − tn) ≥ δtn . (5.49)

Eq. (5.39) and Lemma 5.5 show that � ′′
n (tn) is of the order of ψ ′′(tn), ε2n of the order

of 1/|ψ ′′
n (tn)|. By Lemma 4.3, t2n |ψ ′′

n (tn)| → ∞ hence ε2n/t
2
n → 0 and (5.48) follows.

The same argument shows that for

cn → ∞ with cnεn = o(tn) (5.50)

we still get cnεn = o
(
min(tn, t ′n − tn)

)
. Second, we observe that the prefactor ψ ′′(t)

is essentially constant on the relevant window: Because of ψ ′′′(u)/ψ ′′(u) = O(1/u)
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(Lemma 4.3), we have

ψ ′′(t)
ψ ′′(tn)

= exp
(
−

∫ t

tn

ψ ′′′(u)

ψ ′′(u)
du

)
= exp

(
O

(
log

t

tn

))
(5.51)

and

sup
{∣∣∣

ψ ′′(t)
ψ ′′(tn)

− 1
∣∣∣
∣∣∣ |t − tn| ≤ cnεn

}
= O(cnεn) → 0. (5.52)

Third, we note that cubic corrections can be neglected:

�n(t) = �n(tn) + 1

2

(
1 + o(1)

)
� ′′

n (tn)(t − tn)
2 (5.53)

uniformly in |t − tn| ≤ cnεn . To this aim write, with the help of (5.52),

� ′′
n (t) = n

(
ϕ′′(tn) + O(cnεn)

) + ψ ′′
n (tn)(1 + O(cnεn))

= � ′′
n (tn) + ψ ′′

n (tn)
(
O
( ncnεn
ψ ′′
n (tn)

)
+ O(cnεn)

)

Now n/ψ ′′(tn) = nq ′′(ζn) = O(1) by Lemma 5.5 and ψ ′′(tn) = O(� ′′
n (tn)) by

Eq. (5.39) and the same lemma, hence

� ′′
n (t) = (1 + O(cnεn))�

′′
n (tn) (5.54)

in |t − tn| ≤ cnεn and (5.53) follows. Eqs. (5.52), (5.53) and (5.39) yield

∫ tn+cnεn

tn−cnεn

√|ψ ′′(t)| e�n(t) dt ∼
√
2πψ ′′(tn)
� ′′

n (tn)
∼

√
2π

1 − nσ 2q ′′(ζn)
e�n(tn) . (5.55)

Our next task is to estimate the integral on (0, tn − cnεn) and (tn + cnεn, t ′n), taking
into account that the prefactor

√|ψ ′′(t)| goes to infinity. On both intervals, we have

�n(t) ≤ �n(tn) − 1

2
(1 + O(cnεn))c

2
n . (5.56)

For t ≥ tn + cnεn , we have −ψ ′′(t) ≤ −ψ ′′(tn) hence

√|ψ ′′(t)| exp(�n(t)) ≤ exp
(
�n(tn) − 1

2
(1 + o(1))c2n + 1

2
log |ψ ′′(tn)|

)
. (5.57)

By Lemma 5.6, we may choose cnεn ↘ 0 in such a way that Rn is increasing on
(0, tn(1 − cnεn)), which yields

�n(t) + log
√|ψ ′′(t)| ≤ �n(tn − cnεn) + log

√|ψ ′′(tn − cnεn)|. (5.58)
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This estimate, combined with Eqs. (5.52) and (5.56), shows that (5.57) holds true not
only in (tn + cnεn, t ′n) but also in (0, tn − cnεn). Next, we check that we can choose
cn → ∞ so that not only cnεn = o(tn) but in fact

− (1 + o(1))c2n + log |ψ ′′(tn)| → −∞. (5.59)

By Lemma 4.3 (iii), as t ↘ 0, we may estimate |ψ ′′(t)| as follows: fix t0 > 0 and take
t ∈ (0, t0), then

log(−ψ ′′(t)) = log(−ψ ′′(t0)) −
∫ t0

t

ψ ′′′(u)

ψ ′′(u)
du ≤ log(−ψ ′′(t0)) +

∫ t0

t

C

u
du

= log(−ψ ′′(t0)) + C log
t0
t

= O(| log t |). (5.60)

In particular log |ψ ′′(tn)| = O(log tn). On the other hand,

c2n
| log tn| =

(cnεn
tn

)2� ′′
n (tn)

ψ ′′(tn)
t2n |ψ ′′(tn)|
| log tn| (5.61)

The ratio � ′′
n (tn)/ψ ′′(tn) stays bounded away from 0 and by Lemma 4.3,

t2|ψ ′′(t)|
| log t | → ∞. (5.62)

Thus we may find a function ω(t) → 0 such that ω(t)2t2|ψ ′′(t)|/| log t | still goes to
infinity as t ↘ 0, set cnεn = tnω(tn), and then Eq. (5.59) holds true. The bound (5.57)
then shows

∫ tn−cnεn

0

√|ψ ′′(t)| e�n(t) dt +
∫ t ′n

tn+cnεn

√|ψ ′′(t)| e�n(t) dt = o
(
e�n(tn)

)
. (5.63)

Equations (5.55) and (5.63) complete the proof of the lemma. ��
Lemma 5.8 Let Nn → ∞ with N∗

n � Nn � n. Then

∫ t ′n

0

√|ψ ′′(t)| e�n(t) dt ∼ √
2π e�n(tn) .

Proof The proof of Lemma 5.7 applies without any changes, the end result simplifies
because 1 − nσ 2q ′′(ζn) → 1 by Lemma 5.5. ��
Lemma 5.9 Let Nn → ∞ with lim inf(Nn/n) > 0. Let δ0 > 0 as in Lemma 5.4.
Then

∫ δ0

0

√|ψ ′′(t)| e�n(t) dt ∼ √
2π e�n(tn) .
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Proof By Lemma 5.4, �n(t) has a unique critical point tn in (0, δ0) and we may
use a Gaussian approximation on this interval—there is no need to restrict to an
interval whose length goes to zero. Apart from this difference, the proof is identical
to Lemmas 5.7 and 5.8. ��

6 Evaluation of Contour Integrals: Proof of the Main Theorems

The proof of the main theorems starts from the decomposition

P(Sn = nμ + Nn) = Hn + Vn (6.1)

where Hn andVn are defined as in (3.7). The correctness of (6.1) is checked as inSect. 3,
building on the properties of G(z) proven in Sect. 4. For the proof of Theorem 2.10,
it is convenient to decompose Hn further as Hn = H1

n + H2
n where

H1
n = 1

π

∫ t ′n

0
enRe ϕ(t)−(μn+Nn)t sin(nIm ϕ(t))dt (6.2)

and H2
n is a similar integral, but with integration from t ′n to ηn . In the proof of

Theorem 2.11, we adopt slightly modified definitions and replace the sequence
ηn ∼ Nn/(nσ 2) in the domain of integration by another sequence εn ↘ 0 or by
some fixed small ε > 0.

6.1 Evaluation of Vn

Theorem 2.11 only needs upper bounds for Vn , provided in Lemmas 6.1 and 6.2. The-
orems 2.9 and 2.10 requires the full asymptotic behavior of Vn proven in Lemma 6.3.

Lemma 6.1 Suppose Nn → ∞ and Nn ≥ δn for some δ > 0 and all n ∈ N. Then,
for suitable C = Cδ > 0, every sufficiently small η > 0, and all n ∈ N

1

π

∫ π

0
enRe ϕ(η+iθ)−(μn+Nn)η dθ ≤ e−Cnη .

Proof Let S+ be the half-strip {t ∈ C | Re t ≥ 0, Im t ∈ [0, π)}. By Theorem 4.2,
we know that as t → 0 in S+

Re

(
ϕ(t) − μt − Nn

n
t

)
= −Nn

n
Re t + 1

2
σ 2((Re t)2 − (Im t)2

) + O(t3). (6.3)

Then, for sufficiently small ε1 > 0 and all t ∈ S+ with max(|Re t |, |Im t |) ≤ ε1, the
right side of Eq. (6.3) is smaller than −δRe t/2, which shows

1

π

∫ ε1

0
enRe ϕ(η+iθ)−(μn+Nn)η dθ ≤ ε1

π
e−nδη/2 (6.4)
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for all η ∈ (0, ε1). On the other hand, on the unit circle, G(z) is given by a power
series with strictly positive coefficients, and therefore, |G(z)| has a unique maximum
at z = 1. It follows that for all t = iθ with θ ∈ [ε1, 2π −ε1], we knowRe ϕ(t) < 0. By
continuity this extends to some thin vertical strip Im t ∈ [ε1, 2π − ε1], Re t ∈ [0, ε2]
so that Re (ϕ(t) − μt) ≤ −μRe t and

1

π

∫ π

ε1

enRe ϕ(η+iθ)−(μn+Nn)η dθ ≤ π − ε1

π
e−nμη (6.5)

for all η ∈ (0, ε2). To conclude, we let Cδ := min(δ/2, μ). ��
Lemma 6.2 Assume Nn = m − nμ → ∞ and Nn = o(n). Let εn ↘ 0 with εn ≤
ηn = (1 + o(1)) Nn

nσ 2 . Then, for suitable constant C > 0, as n → ∞,

∣∣∣
1

2π

∫ π

0
enRe ϕ(εn+iθ)−mεn) dθ

∣∣∣ ≤ e−(1+o(1))Nnεn/2 .

Proof The proof is analogous to Lemma 6.1. We start from the estimate (6.3). In a
sufficiently small ε1-neighborhood of the corner 0 of the half-strip S+, we have

Re
(
ϕ(t) − m

n
t
)

≤ −
(Nn

n
− 1

2
σ 2Re t

)
Re t. (6.6)

Notice that ε1 can be chosen n-independent: we only need−σ 2(Im t)2+O((Im t)3) ≤
0 for |Im t | ≤ ε1. When Re t = εn with εn ≤ Nn

nσ 2 , the upper bound in (6.6) is in turn
bounded by −(1 + o(1))Nnεn/2.

When Re t = εn is small but Im t is bounded away from 0 and 2π , we estimate

Re
(
ϕ(t) − m

n
t
)

≤ −m

n
Re t = −

(
μ + Nn

n

)
t ≤ −Nn

n
t. (6.7)

and we conclude as in Lemma 6.1. ��
The proof of the next lemma is closely related to the treatment of moderate devia-

tions for random variables with generating functions analytic beyond z = 1 given by
Ibragimov and Linnik [10].

Lemma 6.3 Let Nn → ∞ along
√
n � Nn = O(n1−γ ) for some γ > 0. Define

ηn ∼ Nn/(nσ 2) by (3.4) and Vn as in (3.7). Then Eq. (3.11) holds true.

Proof Since Re ϕ′(t) = μ + σ 2t + O(t2) is strictly increasing for small t > 0 and
Nn/n → 0, we may fix δ > 0 small enough so that for large n ≥ nδ , the Eq. (3.4)
has indeed a unique solution ηn ∈ (0, δ), which satisfies ηn ∼ Nn/(nσ 2). Arguments
analogous to the proof of Eq. (6.5) show

1

π

∣∣∣
∫ π

δ

en(ϕ(ηn+iθ))−(μn+Nn)(ηn+iθ) cos(nIm ϕ(ηn + iθ))dθ
∣∣∣ ≤ e−nμηn . (6.8)
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We also have, uniformly in s ∈ (0, δn),

ϕ(ηn + is) = ϕ(ηn) + ϕ′(ηn)is − 1

2
ϕ′′(ηn)s2 + O(s3)

= ϕ(ηn) + i

(
μ + Nn

n

)
s − Im ϕ′(ηn)s − 1

2
ϕ′′(ηn)s2 + O(s3) (6.9)

and therefore

Re ϕ(ηn + is) −
(
μ + Nn

n

)
ηn = Re ϕ(ηn) − 1

2
ϕ′′(ηn)s2(1 + O(s)) − Im ϕ′(ηn)s.

(6.10)

Since ϕ′′(ηn) → σ 2, standard arguments show

1

π

∫ δ

0
enRe ϕ(ηn)− n

2 Re ϕ′′(ηn)s2(1+O(s)) ds ∼ exp(nRe ϕ(ηn))√
2πnσ 2

, (6.11)

moreover the contribution to the interval from s ≥ δn := (log n)/
√
n is negligible

and Eq. (6.11) holds true with δ replaced by δn . By Theorem 4.2 and the relation
ImG( et ) = |G( et )|Im ϕ(t), the imaginary part of ϕ′(ηn) vanish faster than any
power of ηn = O(n−γ ), hence nIm ϕ′(ηn) can be neglected; the same argument works
for nIm ϕ′′(ηn). For the cosine, we look separately at (0, δn) and (δn, δ). On (0, δn),
again by Theorem 4.2, sups∈(0,δn) |Im ϕ(ηn + is)| vanishes faster than any power of
max(ηn, δn); hence, it can be neglected. On (δn, δ), we simply bound the cosine by
1. As the contribution from (δn, δ) to the integral (6.11) is negligible, combining
with (6.8), we find in the end

Vn = (1 + o(1))
exp(nRe ϕ(ηn) − μn − Nn)√

2πnσ 2
+ O

(
e−nμηn ). (6.12)

By Theorem 4.2 and Definition 2.8, we have

nRe ϕ(ηn) − μn − Nn =
(
1 + O(

Nn

n
)
) N 2

n

2nσ 2 (6.13)

with correction terms expressed in terms of the Cramér series. In particular, the expo-
nent goes to−∞ as−N 2

n /n, i.e., slower than the term−nμηn = −Nnμ in the second
term. Therefore, the second term in Eq. (6.12) is negligible compared to the first and
Eqs. (3.10) and (3.11) hold true. ��

6.2 Evaluation of Hn

Here we focus on the regime lim inf Nn/N∗
n > 1; the case lim sup Nn/N∗

n ≤ 1 is
treated in the proof of Theorem 2.9. In order to apply the Gaussian approximation
from Sect. 5.4, we need to drop the sine and replace Im ϕ(t) with G( et ).
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Lemma 6.4 Let εn ↘ 0 faster than some power of n, i.e., nε
p
n → 0 for some p > 0.

Then,
sin

(
nIm ϕ(t)

) ∼ nImG( et )

uniformly for t ∈ [0, εn].
Proof We have

ImG( et ) = Im eϕ(t) = eRe ϕ(t) Im ϕ(t) = |G( et )| Im ϕ(t). (6.14)

We know that
sup

t∈[0,εn ]
|ReG( et ) − 1| = O(εn) → 0, (6.15)

and the imaginary part vanishes faster than any power, in particular

sup
t∈[0,εn ]

|ImG( et )| = O(ε
p
n ) → 0. (6.16)

It follows that a similar bound applies to Im ϕ(t). As a consequence,

sup
t∈[0,εn ]

∣∣∣
nIm ϕ(t) − sin(nIm ϕ(t))

sin(nIm ϕ(t))

∣∣∣ = O
(
n2 sup

t∈[0,εn ]
|Im ϕ(t)|2

)

= O
(
n2ε2pn

)
→ 0, (6.17)

Thus sin(nIm ϕ(t)) ∼ nIm ϕ(t), uniformly in [0, εn]. Eq. (6.14) in turn shows
Im ϕ(t) ∼ ImG( et ) uniformly in [0, εn]. ��

The dominant contribution to the Gaussian integral in Lemmas 5.7–5.9 comes
from windows of width o(tn) around tn ; by Remark 5 and Lemma 2.6, tn =
O(t∗n ) = O(N∗

n /n) = O(n−[1−α]/[2−α]). This latter bound vanishes like some nega-
tive power of n, hence Lemma 6.4 is applicable on the interval contributing most to
the Gaussian integrals. Outside, we use the inequality | sin(nIm ϕ(t))| ≤ nIm ϕ(t) =
n(1 + o(1))ImG( et ), and we find: For Nn → ∞ with lim infn→∞ Nn/N∗

n > 1, we
have

H1
n ∼ n√

1 − nσ 2q ′′(ζn)
e�n(tn) . (6.18)

For Nn → ∞ with Nn � N∗
n ,

H1
n ∼ n e�n(tn) . (6.19)

H2
n is estimated in the proof of Theorem 2.10 and is not needed in the proof of Theo-

rem 2.11. Finally, for lim inf Nn/n > 0 and δ0 > 0 small enough as in Lemma 5.4,

1

π

∫ δ0

0
enRe ϕ(t)−mt sin

(
nIm ϕ(t)

)
dt ∼ n e�n(tn) . (6.20)

Remember that �n(tn) = �n(tn, ζn) = − fnr (xnr ) + o(1) and 1 − nσ 2|q ′′(ζn)| ∼
1 − nσ 2|q ′′(xnr )| by the definition of �n and Eq. (2.22), so the right-hand sides in
Eqs. (6.18)–(6.20) correspond to the relevant contribution in Theorems 2.10 and 2.11.
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6.3 Critical Scale: Proof of Theorem 2.10

Let Nn → ∞ with lim inf Nn/N∗
n > 1 and Nn = O(n1/(2−α)). Let ηn ∼ Nn/(nσ 2)

be the solution of (3.4), define Hn and Vn as in (3.7), and H1
n and H2

n as in (6.2) Thus
we have

P(Sn = nμ + Nn) = Vn + H1
n + H2

n . (6.21)

By Lemma 6.3, the asymptotics of Vn is given in terms of the Cramér series as
in Eq. (3.11). H1

n is evaluated with Lemmas 5.7 and 5.8 as the right-hand side of
Eq. (3.22). The proof is complete once we show H2

n = o(Vn).
On (t ′n, ηn), the function �n(t) is increasing by Lemma 5.3,

sup
t∈(t ′n ,ηn)

�n(t) ≤ �n(ηn) =
(
nRe ϕ(ηn) − (nμ + Nn)ηn

)
+ ψ(ηn). (6.22)

The term in big parentheses can be reexpressed with the Cramér series and is exactly
equal to the exponent in the evaluation of Vn [see Eqs. (3.10) and (3.11)], while
ψ(ηn) → −∞. The prefactor satisfies

sup
t∈(t ′n ,ηn)

√|ψ ′′(t)| ≤ √|ψ ′′(t ′n)| = exp
(
O(log t ′n)

)
= exp

(
O(log n)

)
. (6.23)

(remember (5.4) and t ′n ≥ t∗n , with t∗n of the order of N∗
n /n � 1/

√
n). On the other

hand, ηn ↘ 0 faster than some power of n, so by Lemma 4.3, we have for some
constant C

|ψ(ηn)| � | log ηn| ≥ C log n � log
√|ψ ′′(t ′n)|, (6.24)

whence
ψ(ηn) + log n + sup

t∈(t ′n ,ηn)
log

√|ψ ′′(t)| → −∞. (6.25)

In view of (6.22), (3.10) and (3.11), we obtain

H2
n = n

π

∫ ηn

t ′n
enRe ϕ(t)−(nμ+Nn)t ImG( et )dt = o(Vn). (6.26)

which concludes the proof. ��

6.4 Big-Jump: Proof of Theorem 2.11

Let Nn → ∞ with Nn � n1/(2−α). Notice that, by Lemma 2.6, we then have Nn �
N∗∗
n . We distinguish two cases.
Case 1 lim infn→∞ Nn/n > 0. Fix δ0 > 0 as in Lemma 5.4 and define Hn and

Vn as in (3.7) but with δ0 instead of ηn . The asymptotic behavior of Hn is given by
Eq. (6.20). The proof is complete once we check Vn = o(Hn).
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Vn is exponentially small in n by Lemma 6.1. Remembering Eqs. (2.22) and (2.16),
we get

�n(tn) = − fnr (xnr ) + o(1) = −q(Nn) + 1

2
(1 + o(1))nσ 2q ′(Nn)

2 + o(1)

≥ − q(Nn) + o(1) ≥ −CNα
n . (6.27)

It follows that Hn ∼ n exp(�n(tn)) goes to zero slower than exp(−cnα) for some
c > 0, hence Vn = o(Hn) and

P(Sn = nμ + Nn) ∼ Hn ∼ n e− fnr (xnr ) . (6.28)

If n1/(2−α) � Nn � n, set εn = t ′n . By Remark 5, the critical point t ′n ∈ (t∗n , ηn)

is bounded from below by some constant times ηn ∼ Nn/(nσ 2). We define Hn and
Vn as in (3.7) but with εn instead of ηn . Hn is evaluated as in (6.19), which yields
Hn ∼ n exp(�n(tn)); Eq. (6.27) stays valid. Vn is estimated by Lemma 6.2, which
yields Vn = O(exp(−Nnt ′n/2))). Now Nnt ′n → ∞ much faster than Nα

n . Indeed, t
′
n is

bounded from below by some constant times Nn/n, hence

Nα
n

Nnt ′n
= O(nNα−2

n ) → 0. (6.29)

It follows that Vn = o(Hn) and Eq. (6.28) stays true. ��

6.5 Small-Steps: Proof of Theorem 2.9

The proof of Theorem 2.9 requires two more technical lemmas, proven at the end of
this section. Remember the function Rn(t) from (5.40).

Lemma 6.5 If lim supn→∞ Nn/N∗
n < 1, then R′

n > 0 on (0, ηn) for all sufficiently
large n.

Lemma 6.6 Let Nn → ∞ with Nn ∼ N∗
n . Set f ∗

n (x) := q(x) + (N∗
n −x)2

2nσ 2 . Suppose
that there are infinitely many n ∈ N for which the equation R′

n(t) = 0 has a solution
sn ∈ (0, ηn). Then, sn ∼ t∗n and

Rn(sn) = − f ∗
n (x∗

n ) + o
( (N∗

n )2)

n

)
+ O(log n).

The zero sn need not be unique—in case of non-uniqueness the lemma applies to every
choice of sn .

Proof of Theorem 2.9 Let Nn → ∞ along
√
n � Nn ≤ (1 + o(1))N∗

n . Let ηn ∼
Nn/(nσ 2) be the solution of (3.4) and define Vn and Hn as in (3.7). By Lemma 6.3,
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the asymptotic behavior of Vn is given by Eqs. (3.10) and 3.11, so it remains to verify
that Hn = o(Vn). We estimate

Hn ≤ nηn

π
sup

t∈(0,ηn)

√|ψ ′′(t) e�n(t) = nηn

π
sup

t∈(0,ηn)
eRn(t) . (6.30)

Just as in Lemma 5.6, one checks that Rn(t) is increasing for small t . We distinguish
two cases.

Case 1 lim infn→∞ Nn/N∗
n < 1. Then Lemma 6.5 shows, for large n,

sup
t∈(0,ηn)

Rn(t) ≤ Rn(ηn) =
(
nRe ϕ(ηn) − (nμ + Nn)ηn

)
+ ψ(ηn) + log

√|ψ ′′(ηn)|
(6.31)

and we deduce from (3.10)

Hn

Vn
≤ nηn

π

√
2πnσ 2 exp

(
ψ(ηn) + log

√|ψ ′′(ηn)|
)

= exp
(
ψ(ηn) + log

√|ψ ′′(ηn)| + O(log n)
)

(6.32)

which goes to zero by an estimate analogous to (6.24).
Case 2 Nn ∼ N∗

n . If R
′
n reaches its maximum at t = ηn , the estimate (6.32) still

applies. If along some subsequence (n j ), R′
n reaches its maximum at some interior

point sn ∈ (0, ηn), then we must have R′
n(sn) = 0 and by Lemmas 6.6 and 5.1

sup
t∈(0,ηn)

Rn(t) ≤ −(1 + ε + o(1))
N∗
n
2

2nσ 2 + O(log n). (6.33)

for some ε > 0 and all large n. Since Vn = exp(−(1+ o(1)) N∗
n
2

2nσ 2 + O(log n)) we get

Hn

Vn
≤ exp

(
−(ε + o(1))

N∗
n
2

2nσ 2 + O(log n)
)
. (6.34)

By Assumption 2.1 and Lemma 2.6,

1

nσ 2 = |q ′′(x∗
n )| � log x∗

n

x∗
n
2 ≥ log n + O(1)

x∗
n
2 (6.35)

so log n = o(N∗
n
2/n) and the right-hand of (6.34) goes to zero.

We have checked in both cases that Hn = o(Vn), which concludes the proof. ��
Proof of Lemma 6.5 Suppose that the equation R′

n(sn) = 0 has a solution sn ∈ (0, ηn)
for infinitely many n. Thus, (sn) may be defined only along some subsequence (n j ),
which we suppress from the notation. Define yn ∼ ψ ′(sn) as in (5.43). Proceeding as
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in Lemma 5.6, we find that q ′(yn) ∼ (Nn − yn)/(nσ 2). By the convexity of q ′ and
the definition of N∗

n , we have

(1 + o(1))
Nn − yn
nσ 2 = q ′(yn) ≥ N∗

n − yn
nσ 2 = N∗

n − Nn

nσ 2 + Nn − yn
nσ 2 (6.36)

hence N∗
n −Nn ≤ o(Nn − yn) = o(Nn) and lim sup N∗

n /Nn ≤ 1 i.e. lim inf Nn/N∗
n >

1.
So if lim supn→∞ Nn/N∗

n < 1, we must have R′
n �= 0 on (0, ηn) except possibly

for finitely many n. From the proof of Lemma 5.6 we know that limt↘0 R′
n(t) = ∞

for all n ∈ N, and Lemma 6.5 follows. ��
Proof of Lemma 6.6 For t ∈ (0, ηn) with ηn ∼ Nn/(nσ 2) we have

R′
n(t) = n(Re ϕ′(t) − μ) − Nn + ψ ′(t) + 1

2

ψ ′′′(t)
ψ ′′(t)

= nσ 2t − (N∗
n − ζ(t)) + o(nt) + (N∗

n − Nn) + O
(1
t

)

= nσ 2t − (N∗
n − ζ(t)) + o(N∗

n ) + o(ζ(t)). (6.37)

In terms of the dual variable ζ = ζ(t) = ψ ′(t), the equation R′
n(t) = 0 reads

nσ 2q ′(ζ ) − (N∗
n − ζ ) = o(N∗

n ) + o(ζ ). (6.38)

At ζ = x∗
n , the left-hand side of (6.38) vanishes by definition of N∗

n . It follows that

nσ 2q ′(ζ ) − (N∗
n − ζ ) =

∫ ζ

x∗
n

(1 + nσ 2q ′′(x))dx . (6.39)

Fix γ > 0. On ((1+γ )x∗
n ,∞), we have 1−nσ 2|q ′′(x)| ≥ 1−nσ 2|q ′′((1+γ )x∗

n )| =:
cγ > 0 and for all x ≥ x∗

n , the integrand is non-negative. As a consequence,

nσ 2q ′(ζ ) − (N∗
n − ζ ) ≥ cγ

(
ζ − (1 + γ )x∗

n

)
(6.40)

for all ζ ≥ (1+γ )x∗
n . Suppose that Eq. (6.38) has a solution ζ ′

n with ζ ′
n ≥ (1+2γ )x∗

n
along some subsequence. Then N∗

n = O(x∗
n ) = o(ζ ′

n) and

cγ γ ζ ′
n ≤ cγ (ζ ′

n − (1 + γ )x∗
n ) = o(ζ ′

n), (6.41)

which is a contradiction (remember ζ ′
n ≥ x∗

n → ∞). It follows that for every γ > 0,
there are at most finitely many n for which ζ ′

n > (1+2γ )x∗
n , hence lim sup ζ ′

n/x
∗
n ≤ 1.

The case ψ ′(ηn) ≤ ζ ′
n ≤ (1 − 2γ )x∗

n is treated in an analogous fashion, based on
two observations: first, nσ 2q ′′(x)+1 ≤ −cγ < 0 for all x ∈ (a, (1−γ )x∗

n ) and some
cγ > 0. Second, since ηn is of the order of N∗

n /n i.e., of the order of t∗n ∼ q ′(x∗
n ), the

estimate (2.4) shows that ζ ′
n is bounded from below by some constant times N∗

n , i.e.,
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we still have N∗
n = O(ζ ′

n) and ζ ′
n → ∞. We find lim inf ζ ′

n/x
∗
n ≥ 1, hence altogether

lim ζ ′
n/x

∗
n = 1. This applies in particular to ζ ′

n := ψ ′(sn) i.e. sn = q ′(ζ ′
n). Eq. 2.4 and

t∗n ∼ q ′(x∗
n ) (Lemma 5.2) yield lim sn/t∗n = 1.

By Remark 5 and Lemma 2.6, we have sn ∼ t∗n ≥ const N∗
n /n � 1/

√
n hence

log sn = O(log n) and by (5.4)

log |ψ ′′(sn)| = O(log sn) = O(log n). (6.42)

Furthermore for t ∈ (0, ηn)

�n(t) = 1

2
n
(
σ 2t2 + o(η2n)

) − Nnt + tζ(t) − q(ζ(t)

=
{
−q(ζ(t)) + 1

2
nσ 2t2 − (N∗

n − ζ(t))t
}

+ O
(
(N∗

n − Nn)ηn
) + o(nη2n)

(6.43)

The two remainders are o((N∗
n )2/n) by our choice of Nn . Write gn(t) for the term

in curly braces. At t = q ′(x∗
n ) = [N∗

n − x∗
n ]2/[nσ 2], we have ζ(t) = x∗

n , gn(t) =
− f ∗

n (x∗
n ) and g′

n(t) = 0. Moreover, for t ∈ (0, ηn)

g′′
n (t) = nσ 2 + ζ ′(t) = nσ 2 − 1

|q ′′(ζ(t))| = O(nσ 2). (6.44)

Here, we have used that t ≤ ηn implies that ζ(t) is bounded from below by a constant
times N∗

n or equivalently, x∗
n and therefore, |q ′′(ζ(t))| is bounded from below by some

constant times 1/(nσ 2). We deduce

∣∣gn(sn) + f ∗
n (x∗

n )
∣∣ ≤ 1

2
(tn − q ′(x∗

n ))
2 sup
0,ηn

|g′′
n | = o(t2n nσ 2) = o(nη2n) = o

( (N∗
n )2

n

)
.

(6.45)
The estimate on Rn(sn) follows from Eqs. (6.42), (6.43) and (6.45). ��
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Appendix A. Proofs of Lemmas 2.14 and 2.15

Proof of Lemma 2.14 The proof of Assumption 2.1 is straightforward and left to the
reader. The function q(ζ ) = ζ α is analytic in Re ζ > 0 and p(ζ ) = exp(−ζ α)

satisfies, for all k ∈ N,

|ζ k p(ζ )| = |ζ |k e−|ζ |α cos(αarg(ζ )) ≤ |ζ |k e−|ζ |α cos(απ/2) . (A.1)
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Since α ∈ (0, 1), we have cos απ
2 > 0 and Eq. (A.1) shows that |ζ k p(ζ )| is integrable

along Re ζ = 1/2 and that p(ζ ) grows slower than any exponential exp(ε|ζ |). This
proves Assumption 2.2.

The equation q ′′(x∗
n ) = −1/(nσ 2) can be solved explicitly. N∗

n and N∗∗
n are best

determinedwith the scaling relation (2.24). They have already been determined in [12],
we omit the proof. For the insensitivity scale, we notice that

nσ 2q ′(Nn)
2 = nσ 2α2N 2α−2

n (A.2)

which goes to zero if and only if Nn � n−1/(2−2α). ��
Proof of Lemma 2.15 The function q(x) = − log c + (log x)β is clearly smooth on
(1,∞). Then q ′(x) = β(log x)β−1/x and as x → ∞,

q ′′(x) ∼ −β(log x)β−1

x2
, q ′′′(x) ∼ 2β(log x)β−1

x3
. (A.3)

Assumption 2.1 is easily checked. For Assumption 2.2 we note q(ζ ) = c+ (log ζ )β is
analytic in Re ζ > 1. Fix b > 1 and write ζ = r exp(iθ). As |ζ | → ∞ along Re ζ = b
i.e. ζ = b + iy, the argument θ goes to ±π/2 and we have

Re (log |ζ | + iθ)β = Re
(
log |y| + 1

2
log

(
1 + b2

y2

)
+ iθ

)β

(A.4)

= (log |y|)β + o(1), (A.5)

conditions(i) and (ii) inAssumption2.2 are easily checked.Assumption2.3(iii) follows
from a computation similar to (A.3). Set y0 = √

r2 − b2. We have for ζ = b + iy,
y ≥ yr , uniformly in r ,

Re q(ζ ) − Re q(zr ) = (log y)β − (log y0)
β + o(1)

≥ β(log y0)
β−1 log

y

y0
+ o(1) (A.6)

hence

∫ ∞

yr
e−Re q(b+iy) dy ≤ e−Re q(b+iy0)+o(1)

∫ ∞

1
e−(log y0)β−1 log s y0ds

∼ e−Re q(b+iy0) y0
(log y0)β−1 = e−Re q(b+iy0)+O(log r) , (A.7)

which proves Assumption2.3(i). Next let ζ ∈ C with Re ζ > 1, write ζ = r exp(iθ),
then

ζq ′(ζ ) = β(log ζ )β−1 = β(log r + iθ)β−1 = q ′(r)
(
1 + iθ

log r

)β−1
(A.8)
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and for large r and θ ∈ (0, π/2),

Im ζq ′(ζ )

Im ζq ′(r)
∼ β − 1

r log r

θ

sin θ
→ 0 (A.9)

and so Assumption 2.3(ii) holds.
We now turn to the asymptotic behavior of the sequences x∗

n , N
∗
n and N∗∗

n . Since
q ′′(xn) = − 1

nσ 2 , it is clear that xn → ∞ as n → ∞. The equation is

1

nσ 2 ∼ β(log x∗
n )

β−1

(x∗
n )

2 . (A.10)

Consequently,

(x∗
n )

2 ∼ βnσ 2( 1
2 log(x

∗
n )

2)β−1

∼ βnσ 2 ( 1
2 log n

)β−1
(
1 + logβσ 2 + (β − 1) log log x∗

n

log n

)β−1

. (A.11)

The last bracket is asymptotically equal to 1 and we get the expression for x∗
n . Next,

we have from (2.10)

N∗
n = x∗

n + nσ 2 β(log x∗
n )

β−1

x∗
n

∼ 2x∗
n . (A.12)

The last asymptotics follows from (A.10).
We now turn to N∗∗

n . It is asymptotically given by the solution of the equations

N 2
n

2nσ 2 = q(xn) + (Nn − xn)2

2nσ 2 , (A.13)

q ′(xn) = Nn − xn
nσ 2 . (A.14)

Equation (A.14) is equivalent to

x2n − Nnxn + βnσ 2(log xn)
β−1 = 0. (A.15)

The relevant solution is

xn = 1
2

(
Nn +

√
N 2
n − 4βnσ 2(log xn)β−1

)
= Nn

(
1− βnσ 2

N 2
n

(log xn)
β−1(1+ o(1))

)
.

(A.16)

It follows that Nn − xn ∼ βnσ 2

Nn
(log xn)β−1. We insert this in (A.13); using log xn ∼

log Nn , we get

N 4
n

2nσ 2 − N 2
n (log Nn)

β − 1
2β

2nσ 2(log Nn)
2β−2 = o(1). (A.17)
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The relevant solution is

N 2
n ∼ nσ 2

[
(log Nn)

β +
√

(log Nn)2β + β2(log Nn)2β−2
]

∼ 2nσ 2( 12 log N
2
n )β ∼ 21−βnσ 2(log n + log 2σ 2 + β log log Nn

)β
.

(A.18)

Only the term log n matters in the last bracket and the result follows.
The last part of the lemma on insensitivity sequence is shown in [3, Section 8.3],

the proof is therefore omitted. ��

Appendix B. Bivariate Hessian

As explained in Step 4 of the proof outline, the Hessian at (tn, ζn) has determinant
−1 + o(1) and is a saddle point of �n(t, ζ ), considered as a function of two real
variables t, ζ > 0. In order to get rid of off-diagonal elements in the Hessian and to
give all eigenvalues the same sign, we take complex ζ and reparametrize, as sketched
in Step 5.

Lemma B.1 Let ζ(t) be the unique solution of (∂ζ �n)(t, ζ ) = t − q ′(ζ ) = 0. Set

Fn : (0,∞) × R → C, Fn(t, s) = �n(t, ζ(t) + is).

Then (∇Fn)(tn, 0) = 0,

Hess Fn(t, 0) =
(

β(t) 0
0 q ′′(ζ(t))

)
, β(t) = −det(Hess�n)(t, ζ(t))

q ′′(ζ(t))
.

Note that ζn = ζ(tn), so as n → ∞

det Hess Fn(tn, 0) = β(tn)q
′′(ζn) = − det(Hess�n)(tn, ζn) = 1 + o(1). (B.1)

Proof We have

∂t Fn(t, s) = (∂t�n)(t, ζ(t) + is) + (∂ζ �n)(t, ζ(t) + is)ζ ′(t),
∂s Fn(t, s) = i∂ζ �n(t, ζ(t) + is). (B.2)

At t = tn , s = 0, we have ζ(t) = ζn and (∇Fn)(tn, 0) = ∇�n(tn, ζn) = 0. For the
Hessian, we compute

∂2s Fn(t, 0) = −∂2ζ �n(t, ζ(t)) = q ′′(ζ(t)),

∂t∂s Fn(t, 0) = i(∂t∂ζ �n)(t, ζ(t)) + i∂2ζ �n(t, ζ(t))

∂2t Fn(t, 0) = d2

dt2
�n(t, ζ(t)) = β(t). (B.3)
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By definition of ζ(t),

0 = d

dt
∂ζ �n(t, ζ(t)) = (∂t∂ζ �n)(t, ζ(t)) + ∂2ζ �n(t, ζ(t))ζ ′(t). (B.4)

It follows that ∂t∂s Fn(t, 0) = 0, and

β(t) = d2

dt2
�n(t, ζ(t)) = d

dt
(∂t�n)(t, ζ(t))

= (∂2t �n)(t, ζ(t)) + (∂t∂ζ �n)(t, ζ(t))ζ ′(t). (B.5)

We solve for ζ ′(t) in Eq. (B.4), insert into Eq. (B.5), and obtain the formula for β(t).
��
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