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Abstract. We give a rigorous derivation of the free energy of (i) the clas-
sical Ising model on the triangular lattice with translation-invariant cou-
pling constants and (ii) the one-dimensional quantum Ising model. We use
the method of Kac and Ward. The novel aspect is that the coupling con-
stants may have negative signs. We describe the logarithmic singularity of
the specific heat of the classical model and the validity of the Cimasoni–
Duminil-Copin–Li formula for the critical temperature. We also discuss
the quantum phase transition of the quantum model.
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1. Introduction

Onsager’s calculation in 1944 of the free energy of the Ising model on the
square lattice was a remarkable achievement [21]. It helped to characterise the
nature of the phase transition and yielded some critical exponents. Onsager’s
method was algebraic in nature and was simplified by Kaufman [16]. The
formula for the Ising free energy on the triangular lattice was first found by
Houtappel [9] in 1950; he used a simplified version of Kaufman’s method with
more elementary group theory. Further works on the triangular lattice (or
its dual, the hexagonal lattice) include Wannier [28], and Husimi and Syozi
[10,11].

After the work of Onsager and Kaufman, people found two alternate
approaches: combinatorial and fermionic. The former was proposed in 1952
by Kac and Ward [13]; it was later extended by Kasteleyn who noted the
connection with dimer systems [15] (see also Temperley and Fisher [27]). Potts
[23] and Stephenson [25] used the Kac–Ward method on the triangular lattice,
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for the free energy and for correlation functions. The fermionic method was
proposed in 1964 by Schultz et al. [24].

In this article, we use the Kac–Ward approach. It consists of two parts.
First is a remarkable identity that relates the partition function of the Ising
model to (the square root of) the determinant of a suitable matrix; this holds
for arbitrary planar graphs. Second, one uses the Fourier transform to block-
diagonalise the matrix so as to obtain its determinant. The latter step involves
a “mild” modification of the matrix to make it periodic; this mild step has
been used over the years without mathematical justification. Only recently,
careful analyses have been proposed by Kager et al. [14] (see [20] for a clear
description) and by Aizenman and Warzel [1] (who elucidate the connection
to the graph zeta function). These analyses are restricted to nonnegative cou-
pling constants. Another line of research is the determination of the critical
temperature for general two-periodic planar graphs by Li [18] and Cimasoni
and Duminil-Copin [5]; this uses the results of Kenyon et al. [17] for dimer
systems.

The main goal of this article is to extend the Kac–Ward method to the
case of (translation-invariant) coupling constants of arbitrary signs. We work
on the triangular lattice, which is the simplest case of frustrated systems with
translation-invariant coupling constants. We start with the Cimasoni extension
of the Kac–Ward formula to “faithful projections” of non-planar graphs [4]
(see also Aizenman and Warzel [1] for a clear exposition). We use it for the
torus {1, . . . , L}per × {1, . . . , M}per with periodic boundary conditions. The
main difficulties involve the non-planarity of the graph. We prove that these
difficulties vanish in the limit L → ∞ for fixed M . Then, we can use the Fourier
transform and we obtain the free energy formula for the infinite cylinder Z ×
{1, . . . , M}per. The Onsager–Houtappel formula immediately follows by taking
the limit M → ∞.

As is well known, the exact form of the free energy allows to establish the
occurrence of a phase transition characterised by the divergence of the specific
heat (the second derivative of the free energy with respect to the temperature).
We discuss cases where this phase transition occurs or fails to occur.

Our result for cylinders allows us to consider the one-dimensional quan-
tum Ising model, whose free energy was first calculated in 1970 by Pfeuty [22].
We refer to [2,3,6,8,12,19,26] for recent studies. The quantum Ising model
can be mapped to a 2D classical Ising model in the limit where the extra di-
mension becomes continuous. We also discuss the occurrence of a “quantum
phase transition”.

The paper is organised as follows: We state our main theorem about the
free energy of the Ising model on triangular lattices in Sect. 2.1. We then discuss
the possibility of a phase transition in the form of logarithmic singularity of the
specific heat in Sect. 2.2. In Sect. 2.3, we consider the special case where two
coupling constants are equal; we show that the Cimasoni–Duminil-Copin–Li
formula (see Eq. (2.20)) may yield the correct critical temperature even when
the couplings are not all positive. The derivation of the free energy is described
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Figure 1. Our lattice is the torus TL,M with horizontal, ver-
tical, and north-east edges

in Sect. 3. The quantum Ising model is discussed in Sect. 4; we describe the
quantum phase transition at the end of the section.

2. The Classical Ising Model on the Triangular Lattice

2.1. The Free Energy

We view the triangular lattice as a square lattice with additional north-east
edges. Let L,M ∈ N. Let TL be the torus of L sites, TL � Z \ LZ, and let
TL,M be the two-dimensional torus

TL,M = TL × TM . (2.1)

We let EL,M = Ehor
L,M ∪ Ever

L,M ∪ Eobl
L,M denote the set of edges of TL,M where

Ehor
L,M =

{{x, x + e1} : x ∈ TL,M

}
(horizontal edges)

Ever
L,M =

{{x, x + e2} : x ∈ TL,M

}
(vertical edges)

Eobl
L,M =

{{x, x + e1 + e2} : x ∈ TL,M

}
(oblique north-east edges)

This is illustrated in Fig. 1. Let J1, J2, J3 ∈ R be three parameters; we define
the coupling constants (Je)e∈EL,M

to be

Je =

⎧
⎪⎨

⎪⎩

J1 if e ∈ Ehor
L,M ,

J2 if e ∈ Ever
L,M ,

J3 if e ∈ Eobl
L,M .

(2.2)

A spin configuration σ is an assignment of a classical spin ±1 to each
site of TL,M , σ = (σx)x∈TL,M

∈ {−1,+1}TL,M . The Ising Hamiltonian is the
function of spin configurations given by

HL,M (σ) = −
∑

e={x,y}∈EL,M

Jeσxσy. (2.3)
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The partition function is

ZL,M (J1, J2, J3) =
∑

σ

e−HL,M (σ) (2.4)

and the finite-volume free energy density is

fL,M (J1, J2, J3) = − 1
LM

log ZL,M (J1, J2, J3). (2.5)

We consider two infinite-volume limits, to the infinite cylinder and to the
plane. Namely, we define

fM (J1, J2, J3) = lim
L→∞

fL,M (J1, J2, J3);

f(J1, J2, J3) = lim
L→∞

fL,L(J1, J2, J3).
(2.6)

As is well known, we can consider arbitrary van Hove sequences of increasing
domains, see, for example, [7], and we also get f(J1, J2, J3). The next theorem
gives the free energy for the cylinder and for the two-dimensional lattice. The
cylinder formula turns out to be convenient, and it is useful in the calculation
of the 1D quantum Ising model.

Theorem 2.1. For any J1, J2, J3 ∈ R, we have (with k3 = k1 + k2):
(a) On the cylinder Z × TM :

fM (J1, J2, J3) = − log 2 − 1
4πM

∫ π

−π

dk1

∑

k2∈T̃M

log
[ 3∏

i=1

cosh(2Ji) +
3∏

i=1

sinh(2Ji)

−
3∑

i=1

sinh(2Ji) cos ki

]

where T̃M = 2π
M TM + π

M .
(b) On the square or triangular lattice:

f(J1, J2, J3) = − log 2 − 1
8π2

∫

[−π,π]2
dk1dk2 log

[ 3∏

i=1

cosh(2Ji) +
3∏

i=1

sinh(2Ji)

−
3∑

i=1

sinh(2Ji) cos ki

]
.

Setting J3 = 0 and J1 = J2 = J , we get Onsager’s formula for the
isotropic Ising model on the square lattice, namely

f(J, J, 0) = − log 2 − 1
8π2

∫

[0,2π]2
dk1dk2

log
[
cosh2(2J) − sinh(2J)(cos k1 + cos k2)

]
. (2.7)

The proof of part (a) of the theorem can be found at the end of Sect. 3.
The next lemma establishes that f is equal to the limit M → ∞ of fM so that
(b) immediately follows from (a).
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Lemma 2.2. As M → ∞, the cylinder free energy density converges to the
two-dimensional free energy density:

f(J1, J2, J3) = lim
M→∞

fM (J1, J2, J3).

Proof. We omit the dependence on coupling constants to alleviate the notation.
Let J0 = maxi=1,2,3 |Ji|. Writing L = kM + R with R ∈ {0,M − 1}, we have

Zk
M,M e−4J0kM−6J0RM ≤ ZL,M ≤ Zk

M,M e4J0kM+6J0RM . (2.8)

Taking the logarithm and dividing by LM , we get
kM
L fM,M + 4J0k+6J0R

L ≥ fL,M ≥ kM
L fM,M − 4J0k+6J0R

L . (2.9)

We take the limit L → ∞; since kM/L → 1, k/L → 1/M , and R/L → 0, we
obtain

fM,M + 4J0
M ≥ lim

L→∞
fL,M ≥ fM,M − 4J0

M . (2.10)

The lemma follows by taking the limit M → ∞. �

2.2. Logarithmic Singularity of the Specific Heat

We explore the consequences of the formula of Theorem 2.1(b) regarding
the possibility of phase transitions. More specifically, given fixed parameters
J1, J2, J3, we consider the function f : R+ → R:

f(β) = f(βJ1, βJ2, βJ3). (2.11)

We are looking for values of β where f is not analytic. We show the well-known
fact that the second derivative of f (which is related to the physical quantity
called the specific heat) has a logarithmic singularity at a special value βc,
called the critical point. This is illustrated in Fig. 2, which displays the free
energy f(β) and its first and second derivatives in the case of the homogenous
triangular lattice (J1 = J2 = J3 = 1). By Theorem 2.1 (b), we have

f(β) = − log 2 − 1
8π2

∫

[−π,π]2
dk1dk2 log

[
g(β) + h(β; k1, k2)

]
, (2.12)

where (recalling that k3 = k1 + k2)

g(β) =
3∏

i=1

cosh(2βJi) +
3∏

i=1

sinh(2βJi) −
3∑

i=1

sinh(2βJi),

h(β; k1, k2) =
3∑

i=1

sinh(2βJi) (1 − cos ki).

(2.13)

It turns out that the term inside the logarithm is always positive.

Lemma 2.3. For all J1, J2, J3 ∈ R, all β > 0, and all k1, k2 ∈ [−π, π], we have

g(β) + h(β; k1, k2) ≥ 0.
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Figure 2. Plots of the free energy f(β) and its first and sec-
ond derivatives for the translation-invariant triangular lattice
(J1 = J2 = J3 = 1). The second derivative has a logarithmic
singularity at βc = 1

4 log 3 = 0.274 . . .

There should be a simple direct proof for this lemma but we could not
find one. (In the case where J1 = J2, it follows from the proof of Theorem 2.6.)
Instead we obtain it in Sect. 3 using suitable Kac–Ward identities, see Corol-
lary 3.5(a). We now give a criterion for the free energy to be analytic in β.

Lemma 2.4. Assume that g(β0) + h(β0; k1, k2) > 0 for all k1, k2 ∈ [−π, π].
Then, f(β) is analytic in a complex neighbourhood of β0.

Proof. This is a standard complex analysis argument. There exists a complex
neighbourhood N of β0 such that log[g(β) + h(β; k1, k2)] is analytic in β for
each k1, k2. Then

∫
γ

log[g(β) + h(β; k1, k2)]dβ = 0 for any contour γ in N . By
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Fubini’s theorem,
∫

γ

dβ

∫

[−π,π]2
dk1dk2 log[g(β) + h(β; k1, k2)]

=
∫

[−π,π]2
dk1dk2

∫

γ

dβ log[g(β) + h(β; k1, k2)] = 0, (2.14)

so that f(β) is indeed analytic in N . �

Next we establish a sufficient criterion for the logarithmic divergence of
f′′(β). We assume here that the minimum of h(βc; k1, k2) is at k1 = k2 = 0
where this function is 0.

Proposition 2.5. Assume that there exists βc such that

g(βc) = 0, g′′(βc) > 0.

Further, we assume that there exists c > 0 such that for all k1, k2 ∈ [−π, π],

h(βc; k1, k2) ≥ c(k2
1 + k2

2).

Then, f is continuously differentiable at βc, but its second derivative diverges
as log |β − βc| when β approaches βc.

It is not hard to verify that the second condition holds true when
sinh(2βcJi) + 2 sinh(2βcJ3) > 0 for i = 1, 2.

Proof. We already know that f(β) is concave and therefore continuous. For
β 	= βc, we have

f′(β) = − 1
8π2

∫
dk1dk2

g′(β) + ∂
∂β h(β; k1, k2)

g(β) + h(β; k1, k2)
. (2.15)

There exists a constant C such that
∣
∣
∣
∣
g′(β) + ∂

∂β h(β; k1, k2)

g(β) + h(β; k1, k2)

∣
∣
∣
∣ ≤ C

|β − βc| + k2
1 + k2

2

(β − βc)2 + c(k2
1 + k2

2)
. (2.16)

As a → 0+, we note that
∫ 1

0

rdr

a2 + r2
= 1

2 log(a2 + 1) − log a ∼ | log a|. (2.17)

Writing the integral (2.15) with polar coordinates around 0, and using (2.16)
and (2.17), we easily check that f′ is continuous at βc. For the second derivative,
we write

f′′(β) = −g′′(β)
8π2

∫
dk1dk2

g(β) + h(β; k1, k2)
− 1

8π2

∫
dk1dk2

∂2

∂2β h(β; k1, k2)

g(β) + h(β; k1, k2)

+
1

8π2

∫
dk1dk2

(
g′(β) + ∂

∂β h(β; k1, k2)

g(β) + h(β; k1, k2)

)2

. (2.18)

For the first term, we use the bounds g(β) < g′′(βc)(β−βc)2 and h(β; k1, k2) <
const(k2

1+k2
2); using polar coordinates and (2.17), this term diverges as log |β−

βc| when β → βc. The second term is easily seen to be bounded uniformly in
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β → βc using the second condition of the proposition and | ∂2

∂2β h(β; k1, k2)| <

const(k2
1 + k2

2). For the third term, we use (2.16), and | ∂
∂β h(β; k1, k2)| <

const(k2
1 + k2

2). Using polar coordinates, and neglecting constants, we get an
upper bound of the form
∫ 1

0

( |β − βc| + r2

(β − βc)2 + r2

)2

rdr

≤4(β−βc)2
∫ |β−βc|1/2

0

rdr

((β−βc)2+r2)2
+
∫ 1

|β−βc|1/2

( |β − βc|+r2

(β − βc)2+r2

)2

rdr.

(2.19)

The first integral is easily seen to behave as |β − βc|−1, and it is controlled by
the prefactor. The integrand of the second integral is a decreasing function of
r; we get an upper bound by replacing r with |β − βc|1/2 which shows that it
is bounded.

We have now verified that the only divergent term in (2.18) is the first
one, and the divergence is logarithmic indeed. �

2.3. Case J1 = J2

We consider the special case where two coupling constants are identical. By
using symmetries (spin flips along alternate rows or columns), we can assume
without loss of generality that J1 = J2 ≥ 0. Further, by rescaling β, we can
take J1 = J2 = 1.

Theorem 2.6. Let J1 = J2 = 1.
(a) If J3 > −1, there is a unique βc such that f(β) is analytic in R+ \ {βc}

and f′′(β) has a logarithmic divergence at βc.
(b) If J3 ≤ −1, f(β) is analytic in R+.

The theorem is illustrated with the phase diagram of Fig. 3.
It helps to bring in the Cimasoni–Duminil-Copin–Li formula for the criti-

cal density that was established for two-periodic planar lattices with nonnega-
tive coupling constants [5,18]. Its general formulation involves sums over even
graphs in the periodised cell that generates the lattice (see [5, Theorem 1.1]).
In the present situation, this equation is

a(β) = 0 (2.20)

where the function a(β) is defined as

a(β) = 1 + tanh2 β tanh(βJ3) − 2 tanh β − tanh(βJ3) − tanh2 β

−2 tanh β tanh(βJ3). (2.21)

In order to make the connection to the free energy (2.12), we remark that

g(β) = cosh2(2β) cosh(2βJ3)a2(β). (2.22)

Then, g(β) vanishes precisely when a(β) does; indeed, h(β; k1, k2) is nonneg-
ative when the coupling constants are nonnegative, and its minimum is 0.



Kac–Ward Solution of the 2D Classical

Figure 3. Phase diagram with J1 = J2 = 1. The free energy
is proved to lack analyticity at the line that separates the
“ordered” and “uniqueness” phases. The separation line is
the inverse critical temperature βc = βc(J3); it is solution of
the equation tanhβc = j−1(J3) with j defined in Eq. (2.26).
For J3 ≥ 0, the article [5] proves the existence of a unique
infinite-volume Gibbs state for β < βc, and of several distinct
Gibbs states for β > βc. For J3 < 0, uniqueness is only proved
for small β, and the existence of multiple Gibbs states is only
proved for large β (using the Pirogov–Sinai theory, see, for
example, [7])

Proposition 2.5 applies, establishing the singularity of the second derivative of
the free energy.

We check in the proof below that the Cimasoni–Duminil-Copin–Li for-
mula (2.20) holds whenever J1 = J2 ≥ 0, and J3 ∈ R is allowed to be negative.
One can also check that it does not hold if J1 = J2 change signs; indeed, the
free energy is the same due to symmetries (spin flips on a sublattice), but Eq.
(2.20) is different and has different solutions.

In addition to the non-analyticity of the free energy, Cimasoni and
Duminil-Copin prove that the phase transition involves a change of the num-
ber of infinite-volume Gibbs states: There is just one for β ≤ βc and more than
one for β > βc. The proof relies on the GKS and FKG correlation inequalities,
which hold for nonnegative coupling constants only. It would be interesting to
extend this to the case of coupling constants with arbitrary signs.

Proof of Theorem 2.6. When J3 ≥ 0, the theorem is a special case of [5], so
we assume now that J3 ≤ 0 (even though the proof applies to positive J3

with minor changes). We check that there exists a unique βc that satisfies the
conditions of Proposition 2.5.
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We first check that g(β)+h(β; k1, k2) can reach 0 only when k1 = k2 = 0.
Let α = − sinh(2βJ3)

sinh(2β) . Using trigonometric identities, we have

h(β; k1, k2) = 2 sinh(2β) + 2 sinh(2βJ3) + 2 sinh(2β)
[
α cos2(k1+k2

2 )

− cos(k1+k2
2 ) cos(k1−k2

2 )
]
. (2.23)

We can minimise separately on the variables k1+k2
2 and k1−k2

2 . There exists
a minimiser satisfying cos(k1+k2

2 ) ≥ 0 and cos(k1−k2
2 ) = 1. The minimum is

then easily found, namely

min
k1,k2

h(β; k1, k2) =

{
0 if α ≤ 1

2 ,

2 sinh(2β)(1 − α − 1
4α ) if α ≥ 1

2 .
(2.24)

The first case corresponds to k1 = k2 = 0. Suppose that α ≥ 1
2 and that

g(β) + min h(β; k1, k2) = 0. This is equivalent to

(1 + sinh2(2β))
√

1 + α2 sinh2(2β) − (1 + sinh2(2β))α sinh(2β) − sinh2(2β)
4α

= 0. (2.25)

The solution is α = sinh(2β)

2
√

1+sinh2(2β)
< 1

2 ; this contradicts the assumption that

α ≥ 1
2 . This proves that when J1 = J2 and with arbitrary J3 ∈ R, the condition

for βc is g(βc) = 0, which is equivalent to the Cimasoni–Duminil-Copin–Li
equation a(βc) = 0.

Instead of looking for βc as function of J3, it is more convenient to look
for J3 as function of t = tanh β. The equation is then

J3 =
artanh 1−2t−t2

1+2t−t2

artanh t
≡ j(t). (2.26)

The derivative of the function j(t) is

j′(t) = − (1 + t2)artanh t + 2t artanh 1−2t−t2

1+2t−t2

2t(1 − t2)artanh2 t
. (2.27)

It is not hard to check that 1−2t−t2

1+2t−t2 ≥ −t; it follows that the numerator above
is positive so that j′(t) < 0. Further, j(t) goes to +∞ as t → 0+ and goes to
−1 as t → 1−. Then, j−1 exists as a function (−1,∞) → R+; it follows that
Eq. (2.26) has a unique solution when J3 > −1 and no solutions otherwise.
We also see that βc → 0 as J3 → ∞, and βc → ∞ as J3 → −1.

Finally, we check that g′′(βc) > 0. It is enough to check that a′(βc) 	= 0.
We have

a′(β) = −2(1 − t2)
[
1 + t + (1 − t) tanh(βJ3)

] − J3(1 + 2t − t2)
[
1 − tanh2(βJ3)

]
. (2.28)

At β = βc, we have tanh(βcJ3) = 1−2t−t2

1+2t−t2 , where t = tanh βc. It is then
possible to write a′(βc) as

a′(βc) = −4(1 − t2)(1 + t2 + 2tJ3)
1 + 2t − t2

. (2.29)
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Figure 4. Two faithful projections of the graph (T3,3, E3,3).
The handles cross at non-vertex locations; some handles cross
themselves. The matrix K(1) is defined on the left graph; the
matrix K(2) is defined on the right graph

This is clearly not 0 since t < 1 and J3 > −1.
The condition on h in Proposition 2.5 clearly holds. �

3. The Kac–Ward Identity

We rely on the extension of the Kac–Ward identity to “faithful projections”
of non-planar graphs. It was proposed by Cimasoni [4] and used in [1,14]. In
order to accommodate negative weights, we need two faithful projections for
TL,M with edges between nearest-neighbours. The graphs are G1 and G2, and
they are illustrated in Fig. 4. Here is a full description of the left graph:

• The vertices are (i, j) with 1 ≤ i ≤ L and 1 ≤ j ≤ M .
• There are edges represented by straight lines between (i, j) and (i + 1, j)

for 1 ≤ i ≤ L − 1, 1 ≤ j ≤ M ; between (i, j) and (i, j + 1) for 1 ≤ i ≤ L,
1 ≤ j ≤ M − 1; and between (i, j) and (i + 1, j + 1) for 1 ≤ i ≤ L − 1,
1 ≤ j ≤ M − 1.

• There are edges represented by “handles” (continuous curves with wind-
ing number −1) between (L, j) and (1, j) for 1 ≤ j ≤ M ; between (L, j)
and (1, j + 1) for 1 ≤ j ≤ M − 1; between (i,M) and (i, 1) for 1 ≤ i ≤ L;
and between (i,M) and (i + 1, 1) for 1 ≤ i ≤ L − 1.

• And there is a self-crossing handle between (L,M) and (1, 1) whose wind-
ing number is −2.

• The handles are drawn so that handles starting at (i,M) only cross the
handles starting at (L, j) (and they cross them exactly once); the self-
crossing handle belongs to both groups.

The second graph is similar, except that the oblique handle no longer self-
crosses but the other horizontal handles all self-cross.
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The Kac–Ward identity involves matrices indexed by directed edges. We
denote �EL,M the edges of EL,M with direction. The coupling constants defined
in Eq. (2.2) can be extended to directed edges by assigning the same value Je

to both directions of the same edge; then, we let W to be the diagonal matrix
whose element We,e is equal to tanhJe. We now introduce the Kac–Ward
matrix K(1) by

K(1)

e,e′ = 1e � e′ e
i
2 �1(e,e′)+ i

2 �1(e) , e, e′ ∈ EL,M . (3.1)

Here, e � e′ means that the endpoint of e is equal to the starting point of e′ and
also that e′ is not equal to the reverse of e′ (the matrix is not “backtracking”).
�1(e, e′) : EL,M → (−π, π] is the angle between the end of e and the start of e′

on the faithful projection G1; �1(e) : EL,M → R is the integrated angle along
the planar curve that represents the edge e.

Following [1], we define an average over even subgraphs: If f is a function
on graphs, let

〈f〉L,M =
1

Z̃L,M

∑

Γ⊂EL,M :∂Γ=∅
f(Γ)w(Γ) (3.2)

where the normalisation is Z̃L,M =
∑

Γ∈EL,M :∂Γ=∅ w(Γ). The definition of the
weight is w(Γ) =

∏
e∈Γ tanh Je. The boundary ∂Γ of a graph is the set of

vertices whose incidence number is odd; the sum in the right-hand side is over
even subgraphs. Notice that Z̃L,M is always positive as can be seen from its
relation to the Ising partition function, see (3.4).

With these definition, we have the remarkable Kac–Ward identity [1,
Theorem 5.1]:

√
det(1 − K(1)W ) = Z̃L,M

〈
(−1)n

(1)
0 (Γ)

〉
L,M

. (3.3)

Here, n(1)
0 (Γ) is the total number of crossings between all edges of Γ when the

graph is projected on G1.
It is worth noting that the right side of (3.3) is a multinomial in (We,e),

something that is not apparent in the left side—there are remarkable can-
cellations indeed. This allows [1] to prove the identity for small (We,e); the
extension to larger values is automatic. The determinant cannot be negative
and the sign of the square root cannot change.

We define the matrix K(2) as in (3.1) but �2(e, e′) and �2(e) are the
corresponding angles on the faithful projection G2. Analogously, we define
n(2)

0 (Γ) for this projection.
The connection with the Ising model is through the high-temperature

expansion, see, for example, [7, Section 3.7.3]. The partition function (2.4) is
equal to

ZL,M (J1, J2, J3) = 2LM

( ∏

e∈EL,M

cosh Je

) ∑

Γ⊂EL,M :∂Γ=∅
w(Γ)

= 2LM

( ∏

e∈EL,M

cosh Je

)
Z̃L,M . (3.4)
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The strategy of Aizenman and Warzel [1] is to prove that 〈(−1)n
(1)
0 (Γ)〉L,M

→ 1 as L,M → ∞. This can be done when the coupling constants are positive,
and small enough so the temperature is higher than the 2D critical temper-
ature. (Then, duality is used to get the formula for low temperatures.) The
presence of negative coupling constants necessitates a different approach. We
first show in Lemma 3.1 that a combination of the two faithful projections
gives the partition function, up to a correction. We then show in Lemma 3.2
that this correction vanishes in the limit L → ∞, for fixed M . Denote by nh(Γ)
the number of horizontal handles of the subgraph Γ, that is, the number of
handles in Γ that connect sites of the form (L, i) with sites (1, j). Note that
the total number of horizontal handles of EL,M is 2M .

Lemma 3.1. We have
√

det(1 − K(1)W ) +
√

det(1 − K(2)W ) = 2Z̃L,M

(
1 − 〈

1nh(Γ) odd

〉
L,M

)
.

Proof. From Eq. (3.3), we have
√

det(1 − K(1)W ) +
√

det(1 − K(2)W ) = Z̃L,M

〈
(−1)n

(1)
0 (Γ) + (−1)n

(2)
0 (Γ)

〉
L,M

(3.5)

Let nv(Γ) be the number of handles in Γ that connect sites of the form
(i,M) with sites (j, 1) (excluding the handle between (L,M) and (1, 1)) and let
nhv(Γ) = 0, 1 be the indicator on whether the handle from (L,M) and (1, 1) is
present. (Notice the asymmetric definition of nv and nh, as the oblique handle
is included in nh but not in nv.) We have

1
n

(1)
0 (Γ) odd

= 1nh(Γ) odd

(
1nhv(Γ)=0 1nv(Γ) odd + 1nhv(Γ)=1 1nv(Γ) even

)
;

1
n

(2)
0 (Γ) odd

= 1nh(Γ) odd

(
1nhv(Γ)=0 1nv(Γ) even + 1nhv(Γ)=1 1nv(Γ) odd

)
.

(3.6)

It follows that

1
n

(1)
0 (Γ) odd

+ 1
n

(2)
0 (Γ) odd

= 1nh(Γ) odd. (3.7)

By combining the above relation with (3.5), using (−1)n
(i)
0 (Γ) = 1−2·1

n
(i)
0 (Γ) odd

,
the lemma follows. �

Lemma 3.2. For any J1, J2, J3 ∈ R, for any M ∈ N, we have

lim
L→∞

〈
1nh(Γ) odd

〉
L,M

= 0.

Proof. We condition on the horizontal handles (including possibly the self-
crossing ones). We denote by h the set of handles that connect sites in the
leftmost and rightmost columns:

h =
{{(1, j1), (L, j′

1)}, . . . , {(1, jk), (L, j′
k)}}. (3.8)

Then, we define the support supp 1h, resp. supp Lh, to be the set of vertices
of the form (1, ji), resp. (L, j′

i), that appear an odd number of times in h. Let
supp h = supp 1h ∪ supp Lh. We let ẼL,M be the set of edges of the cylinder
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(not the torus) {1, . . . , L} × TM . With 1h = 1h(Γ) the indicator function that
the random graph Γ has set of handles h, we have
〈
1nh(Γ) odd

〉
L,M

=
∑

|h| odd

〈1h〉L,M

=
∑

|h| odd

( k∏

i=1

tanh J(1,ji),(L,j′
i)

)
1

Z̃L,M

∑

Γ⊂ẼL,M :∂Γ=supp h

w(Γ).

(3.9)

We now consider an Ising model on the cylinder {1, . . . , L} × TM . We have

1

Z̃cyl
L,M

∑

Γ⊂ẼL,M :∂Γ=supp h

w(Γ) =

〈
∏

x∈supp h

σx

〉cyl

L,M

. (3.10)

Notice that the partition function Z̃cyl
L,M is almost equal to Z̃L,M ; either ratio

is less than e2M(|J1|+|J3|) . Next we introduce the transfer matrix Tη,η′ between
column configurations η, η′ ∈ {−1,+1}M :

Tη,η′ = exp
{ M∑

i=1

(
J1ηiη

′
i + J2ηiηi+1 + J3ηiη

′
i+1

)}
. (3.11)

Here, we defined ηM+1 ≡ η1. The transfer matrix allows to write the Ising
correlations above as

〈 ∏

x∈supp h

σx〉cyl
L,M =

1
TL

∑

η,η′
〈η|TL−1|η′〉

(
∏

x∈supp 1h

ηx)(
∏

y∈supp Lh

η′
y) eJ2

∑M
i=1 η′

iη
′
i+1 . (3.12)

The matrix elements of T are positive; by the Perron–Frobenius theorem there
exist vectors |v〉, |w〉 such that

lim
L→∞

TL−1

TrTL
=

1
λmax

|v〉〈w|. (3.13)

Here, λmax > 0 is the largest eigenvalue of T . (It depends on M .) The vectors
|v〉, |w〉 can be decomposed in the basis {|η〉} of column configurations, and
their coefficients have the spin-flip symmetry. Taking the limit L → ∞ in
(3.12), one gets 0. Indeed, the sum over η is

∑

η (
∏

x∈supp 1h

ηx)〈η|v〉 (3.14)

which is zero since supp 1h contains an odd number of vertices; the sum over
η′ also gives zero. �

Next we seek to calculate the determinants of 1−K(1)W and 1−K(2)W .
For this, we first make the matrices translation-invariant so we can use the
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Fourier transform. Let us define K̃(i), i = 1, 2 to be as K(i), i = 1, 2 but
omitting the respective integrated angle of the handles:

K̃(i)

e,e′ = 1e �e′ e
i
2 �i(e,e′) i = 1, 2. (3.15)

Actually, K̃(1)

e,e′ = K̃(2)

e,e′ and we shall write K̃e,e′ for either K̃(1)

e,e′ or K̃(2)

e,e′ . Then,

we define modified diagonal matrices W̃ (1)
e,e and W̃ (2)

e,e; matrix elements now
depend on the direction of e:

W̃ (1)
e,e =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

We,e eiπ/L if e =→,

We,e e−iπ/L if e =←,

We,e eiπ/M if e =↑,

We,e e−iπ/M if e =↓,

We,e eiπ( 1
L + 1

M ) if e =↗,

We,e e−iπ( 1
L + 1

M ) if e =↙ .

W̃ (2)
e,e =

⎧
⎪⎨

⎪⎩

We,e ife =→ or ←,

We,e eiπ/M ife =↑ or ↗,

We,e e−iπ/M if e =↓ or ↙ .

(3.16)

Lemma 3.3. We have

det(1 − K(1)W ) = det(1 − K̃W̃ (1)), det(1 − K(2)W ) = det(1 − K̃W̃ (2)).

Proof. One can expand the determinants as products of directed loops as in
[1, Theorem 3.2]. Let γ = (e1, . . . , ek) be a directed loop with � handles. (The
self-crossing handle between (L.M) and (1, 1) is counted twice.) We have

k∏

i=1

K(1)
ei,ei+1

= (−1)

k∏

i=1

K̃ei,ei+1 ,

k∏

i=1

W̃ (1)
ei,ei

= (−1)

k∏

i=1

Wei,ei
.

(3.17)

Then, each loop gives the same contribution in det(1−K(1)W ) and in det(1−
K̃W̃ (1)). The argument for det(1 − K(2)W ) is the same, and counting only
vertical and oblique handles between sites (i,M) and (j, 1), 1 ≤ i, j,≤ L. �
Lemma 3.4. Let T∗

L = 2π
L TL and recall that T̃L = T

∗
L + π

L .
(a) With k3 = k1 + k2, we have

det(1 − K̃W̃ (1)) =
∏

k1∈T̃L

∏

k2∈T̃M

[ 3∏

i=1

(
1 + tanh2 Ji

)
+ 8

3∏

i=1

tanh Ji

−2
3∑

i=1

tanh Ji

(
1 − tanh2 Ji+1

)(
1 − tanh2 Ji+2

)
cos ki

]
.

(b) Again with k3 = k1 + k2, we have

det(1 − K̃W̃ (2)) =
∏

k1∈T
∗
L

∏

k2∈T̃M

[ 3∏

i=1

(
1 + tanh2 Ji

)
+ 8

3∏

i=1

tanh Ji

−2
3∑

i=1

tanh Ji

(
1 − tanh2 Ji+1

)(
1 − tanh2 Ji+2

)
cos ki

]
.
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Proof. For (a), we label the set of directed edges as (x, α) where x ∈ TL,M

and α ∈ A, with

A =
{→,←, ↑, ↓,↗,↙}

. (3.18)

The Fourier coefficients are (k, α) with k ∈ T
∗
L,M = T

∗
L × T

∗
M . The Fourier

transform is represented by the unitary matrix U :

U(k,α),(x,β) =
1√
LM

e−ikx δα,β , (3.19)

for x ∈ TL,M , k ∈ T
∗
L,M , and α, β ∈ A. Since W̃e,e depends only on α ∈ A, we

have

(UW̃ (1)U−1))(k,α),(k′,β) = W̃ (1)
α δk,k′δα,β . (3.20)

Further, straightforward Fourier calculations give

(UK̃U−1)(k,α),(k′,β) = δk,k′
∑

x∈TL,M

eikx K̃(0,α),(x,β) ≡ δk,k′K̂α,β(k), (3.21)

with the matrix K̂(k) given by

K̂(k) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

eik1 0 0 0 0 0
0 e−ik1 0 0 0 0
0 0 eik2 0 0 0
0 0 0 e−ik2 0 0
0 0 0 0 ei(k1+k2) 0
0 0 0 0 0 e−i(k1+k2)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 ei π
4 e−i π

4 ei π
8 e−i 3π

8

0 1 e−i π
4 ei π

4 e−i 3π
8 ei π

8

e−i π
4 ei π

4 1 0 e−i π
8 ei 3π

8

ei π
4 e−i π

4 0 1 ei 3π
8 e−i π

8

e−i π
8 ei 3π

8 ei π
8 e−i 3π

8 1 0
ei 3π

8 e−i π
8 e−i 3π

8 ei π
8 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.22)

Let us define

Ŵ (1)(k) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

t1 eik1 0 0 0 0 0
0 t2 e−ik1 0 0 0 0
0 0 t2 eik2 0 0 0
0 0 0 t2 e−ik2 0 0
0 0 0 0 t3 ei(k1+k2) 0
0 0 0 0 0 t3 e−i(k1+k2)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.23)

where ti = tanh Ji, i = 1, 2, 3. Then,

det (1 − K̃W̃ (1)) = det (1 − W̃ (1)K̃) =
∏

k∈T
∗
L,M

det
[
1 − Ŵ (1)

(
k + ( π

L , π
M )

)
K̂(0)

]

=
∏

k1∈T̃L

∏

k2∈T̃M

det
[
1 − Ŵ (1)

(
(k1, k2)

)
K̂(0))

]
.

(3.24)
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The first identity follows from a loop expansion, see [1, Theorem 3.2]. A cal-
culation of the determinant by grouping the terms according to k1 + k2, k1, k2

yields

det
[
1 − Ŵ (1)

(
(k1, k2)

)
K̂(0))

]
=

3∏

i=1

(
1 + tanh2 Ji

)
+ 8

3∏

i=1

tanh Ji

− 2
3∑

i=1

tanh Ji

(
1 − tanh2 Ji+1

)(
1 − tanh2 Ji+2

)
cos ki (3.25)

where k3 = k1 + k2. This gives (a).
The proof of (b) is similar. �

Corollary 3.5.

(a) The determinants are nonnegative, det(1 − K̃W̃ (1)) ≥ 0 and det(1 −
K̃W̃ (2)) ≥ 0.

(b) Taking the logarithms, dividing by L, we have as L → ∞

lim
L→∞

1
L

log det(1 − K̃W̃ (1)) = lim
L→∞

1
L

log det(1 − K̃W̃ (2))

=
∫

[−π,π]

dk1

∑

k2∈T̃M

log
[ 3∏

i=1

(
1 + tanh2 Ji

)
+ 8

3∏

i=1

tanh Ji

−
3∑

i=1

2 tanh Ji

(
1 − tanh2 Ji+1

)(
1 − tanh2 Ji+2

)
cos ki

]
.

Proof. (a) By Eq. (3.3) and Lemma 3.3, we obtain that both square roots
of the above determinants are real. (b) This is a consequence of Lemma 3.4;
taking the logarithm we obtain Riemann sums. �

Proof of Theorem 2.1. (a) From the high-temperature expansion (3.4), we ob-
serve that the finite-volume free energy with periodic boundary conditions
satisfies

− fL,M (J1, J2, J3) = log 2 + log

[
3∏

i=1

cosh Ji

]

+
1

LM
log

[
Z̃L,M

]
. (3.26)

Using Lemma 3.1, Lemma 3.2 and Lemma 3.3, we see that the free energy on
the infinite cylinder is

− fM (J1, J2, J3) = log 2 + log

[
3∏

i=1

cosh Ji

]

+ lim
L→∞

1
LM

log

[√
det(1 − K̃W̃ (1)) +

√
det(1 − K̃W̃ (2))

]

(3.27)
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By Corollary 3.5(a), we have

log
√

det(1 − K̃W̃ (1)) ≤ log

[√
det(1 − K̃W̃ (1)) +

√
det(1 − K̃W̃ (2))

]

≤ max
i=1,2

log
√

det(1 − K̃W̃ (i)) + log 2. (3.28)

Dividing by L, all terms above converge to the same limit as L → ∞ by
Corollary 3.5(b). We get

− f(J1, J2, J3) = log 2 + log

[
3∏

i=1

cosh Ji

]

+
1

4πM

∫

[0,2π]

dk1

∑

k2∈T̃M

log
[ 3∏

i=1

(
1 + tanh2 Ji

)

+ 8
3∏

i=1

tanh Ji −
3∑

i=1

2 tanh Ji

(
1 − tanh2 Ji+1

)(
1 − tanh2 Ji+2

)
cos ki

]
.

(3.29)

In order to get the expression of Theorem 2.1, one should use the hyperbolic
identities 1 + tanh2 x = cosh(2x)

cosh2 x
and tanhx = sinh 2x

2 cosh2 x
and extract a factor

(∏
i cosh Ji

)−1. �

4. The 1D Quantum Ising Model

One application of the cylinder formula of Theorem 2.1(a) deals with the one-
dimensional quantum Ising model. It is well known that it can be mapped to a
classical model in 1 + 1 dimensions, the extra dimension being the continuous
interval [0, β] with periodic boundary conditions. A phase transition is only
possible when both dimensions are infinite, which necessitates taking the limit
of zero-temperature β → ∞. The free energy of the quantum Ising model was
first computed by Pfeuty [22] using the fermionic method of [24]. The results
of this section are not new, but the Kac–Ward approach may have more appeal
to some readers.

We consider the chain {1, . . . , L} with periodic boundary conditions. The
Hilbert space is HL = ⊗L

i=1C
2. Let S(1) and S(3) denote the spin operators on

C
2 whose matrices are

S(1) = 1
2

(
0 1
1 0

)
, S(3) = 1

2

(
1 0
0 −1

)
. (4.1)

Then, we denote S(j)
i the spin operators at site i ∈ Z. With h ∈ R the magnetic

field, the Hamiltonian is

HL = −
L∑

i=1

S(3)
i S(3)

i+1 − h

L∑

i=1

S(1)
i . (4.2)
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Here, the site i = L + 1 is defined as i = 1. The partition function is

Zqu
L (β, h) = Tr HΛ e−βHL . (4.3)

The finite-volume free energy is

fqu
L (β, h) = − 1

βL
log Zqu

L (β, h). (4.4)

Notice the division by β, which allows to get the ground state energy by taking
the limit β → ∞.

Theorem 4.1. The infinite-volume free energy of the one-dimensional quantum
Ising model is equal to

fqu(β, h) = lim
L→∞

fqu
L (β, h) = − 1

β log 2

− 1
2πβ

∫ π

−π

dk log cosh
(β

4

√
1 + 4h2 + 4h cos k

)
.

We prove this theorem by invoking the well-known fact that the d-
dimensional quantum Ising model is equivalent to a (d + 1)-dimensional clas-
sical Ising model, the extra dimension being continuous; see Proposition 4.2.
We check in Proposition 4.3 that the continuum limit can be taken after the
infinite-volume limit. This allows to make direct use of Theorem 2.1. The
remaining step is to take the continuum limit, and it is not entirely straight-
forward; the proof of Theorem 4.1 can be found at the end of this section.

Proposition 4.2. Let us define coupling constants J (n)
1 , J (n)

2 by

J (n)
1 =

β

4n
, J (n)

2 = − 1
2 log

βh

2n
.

Then, we have the identity

Zqu
L (β, h) = lim

n→∞ Zqu
L,n(β, h)

with

Zqu
L,n(β, h) = exp

{
1
2Ln log βh

2n

}
ZL,n(J (n)

1 , J (n)
2 ).

Here, ZL,n(J (n)
1 , J (n)

2 ) is the partition function defined in Eq. (2.4) with J3 = 0.

Proof. By the Lie–Trotter formula,

Tr e−βHL = lim
n→∞ Tr

(
e

β
n

∑L
i=1 S

(3)
i S

(3)
i+1

L∏

i=1

(
1 + βh

n S(1)
i

)
)n

= lim
n→∞

∑

σ(1),...,σ(n)

exp
{

β

4n

L∑

i=1

n∑

k=1

σ(k)
i σ(k)

i+1

}

L∏

i=1

n∏

k=1

〈σ(k)
i |(1 + βh

n S(1)
)|σ(k+1)

i 〉.

(4.5)
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We now observe that

〈σ|(1 + βh
n S(1)

)|σ′〉 = e−J
(n)
2 +J

(n)
2 σσ′

. (4.6)

Inserting this identity in (4.5), we get the proposition. �

Next we check that we can exchange the infinite-volume and the contin-
uum limits for the free energy. Let us define

fqu
L,n(β, h) = − 1

L log Tr
(

e
β
n

∑L
i=1 S

(3)
i S

(3)
i+1 e

βh
n

∑L
i=1 S

(1)
i

)n

. (4.7)

We already know that fqu
L (β, h) = limn→∞ fqu

L,n(β, h) for fixed L.

Proposition 4.3.

(a) For fixed n, the limit L → ∞ of fqu
L,n(β, h) exists (and is denoted

fqu
∞,n(β, h)).

(b) We have

fqu(β, h) = lim
L→∞

lim
n→∞ fqu

L,n(β, h) = lim
n→∞ lim

L→∞
fqu

L,n(β, h).

Proof. Since the trace of the Lie–Trotter product can be written as a classical
partition function, see Proposition 4.2, we can proceed as with the usual proofs
of thermodynamic limits, see [7], and we easily obtain (a).

The first equality in (b) is clear. For the second equality, we use the
following estimates, which again follow from estimates on the classical partition
function:

Zqu
L,n(β, h)k e− βk

2 ≤ Zqu
kL,n(β, h) ≤ Zqu

L,n(β, h)k e
βk
2 . (4.8)

Taking k → ∞, we get

fqu
L,n(β, h) + 1

2L ≥ fqu
∞,n(β, h) ≥ fqu

L,n(β, h) − 1
2L . (4.9)

The rest of the proof is a standard ε
3 argument. For any ε > 0, we can find

L = L(ε) large enough so that for all n, we have
∣
∣fqu(β, h) − fqu

L (β, h)
∣
∣ ≤ ε

3 ,
∣
∣fqu

∞,n(β, h) − fqu
L,n(β, h)

∣
∣ ≤ ε

3 . (4.10)

Then, we can find n0 = n0(ε) such that |fqu
L (β, h) − fqu

L,n(β, h)| ≤ ε
3 for all

n ≥ n0. Then,
∣
∣fqu(β, h) − fqu

∞,n(β, h)
∣
∣ ≤ ∣

∣fqu(β, h) − fqu
L (β, h)

∣
∣

+
∣
∣fqu

L (β, h) − fqu
L,n(β, h)

∣
∣ +

∣
∣fqu

L,n(β, h) − fqu
∞,n(β, h)

∣
∣ ≤ ε.

(4.11)

This holds for any ε > 0 provided n is large enough. This proves the second
identity in (b). �

Proof of Theorem 4.1. We need the following identity:
∑

k2∈T̃M

log
[
coth(2J2) − cos k2

]

= −M log 2 + M log coth J2 + 2 log
(
1 + (coth J2)−M

)
. (4.12)

It can be obtained by taking the limit J1, J3 → 0 in Theorem 2.1(a), as the
expression converges to the free energy of the 1D Ising model in TM . The latter



Kac–Ward Solution of the 2D Classical

is easily calculated with the 1D transfer matrices, yielding − log(2 cosh J2) −
1
M log(1 + tanhM J2). We can substitute a = coth(2J2) in the left side of Eq.
(4.12), and coth J2 = a +

√
a2 − 1 in the right side.

By Propositions 4.2 and 4.3, the free energy of the quantum Ising model
is the limit n → ∞ of

fqu
∞,n(β, h) = −n

2 log 2βh
n − n

2 log sinh(− log βh
2n )

− 1
4π

∫ π

−π

dk1

∑

k2∈T̃n

log
[
cosh β

2n coth(− log βh
2n )

− sinh β
2n

sinh(− log βh
2n )

cos k1 − cos k2

]
. (4.13)

We now use
cosh β

2n = 1 + 1
2 ( β

2n )2 + O( 1
n4 ).

coth(− log βh
2n ) = 1 + 2(βh

2n )2 + O( 1
n4 ).

sinh β
2n = β

2n + O( 1
n3 ).

sinh(− log βh
2n ) = 1

2 ( 2n
βh )(1 + O( 1

n2 )).

(4.14)

Inserting in the previous expression for fn(β, h) we obtain

fqu
∞,n(β, h) = −n

2 log 2 + O( 1
n ) − 1

4π

∫ π

−π

dk1

∑

k2∈T̃n

log
[
1 + 1

2 ( β
2n )2ε(h, k1)2 + O( 1

n3 ) − cos k2

]
, (4.15)

where we introduced

ε(h, k1) =
√

1 + 4h2 + 4h cos k1. (4.16)

We now use the identity (4.12) with a = 1+ 1
2 ( β

2n )2ε(h, k1)2 +O( 1
n3 ), in which

case we have a +
√

a2 − 1 = 1 + β
2nε(h, k1) + O( 1

n2 ). We get

fqu
∞,n(β, h) = −n

2 log 2 + O( 1
n )

− 1
4π

∫ π

−π

dk1

{
−n log 2 + n log

(
1 + β

2nε(h, k1) + O( 1
n2 )

)

+2 log
(
1 +

(
1 + β

2nε(h, k1) + O( 1
n2 )

)−n
)}

= O( 1
n ) − 1

4π

∫ π

−π

dk1

{
β
2 ε(h, k1) + 2 log

(
1 + e− β

2 ε(h,k1)
)}

.

(4.17)

Replacing β
2 ε(h, k1) by 2 log e

β
4 ε(h,k1) and combining the logarithms, we obtain

the expression of Theorem 4.1. �

We finally discuss the “quantum phase transition” of the quantum Ising
model. The free energy fqu(β, h) of the one-dimensional model is clearly an-
alytic for all β > 0, h ∈ R (and in a complex neighbourhood), but interesting
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behaviour can happen in the zero-temperature limit. Namely, we consider the
ground state energy

e0(h) = lim
β→∞

fqu(β, h). (4.18)

From Theorem 4.1, we get the exact expression

e0(h) = − 1
8π

∫ π

−π

dk
√

1 + 4h2 + 4h cos k. (4.19)

One can check that the derivative of e0 is continuous. The second derivative
is

e′′
0(h) = − 1

2π

∫ π

−π

dk√
1 + 4h2 + 4h cos k

+
1
2π

∫ π

−π

dk
(2h + cos k)2

(1 + 4h2 + 4h cos k)3/2
. (4.20)

The integrals are well behaved except possibly at h = ± 1
2 . While the second

integral has a limit as h → ± 1
2 , the first integral diverges logarithmically.

Precisely, we can check that

e′′
0(h) ∼ 1

2π log |h ± 1
2 | (4.21)

around h = − 1
2 and h = 1

2 . As is well known, there are multiple ground states
when |h| < 1

2 that display long-range order; there is a single disordered ground
state when |h| > 1

2 . More information about the quantum Ising model can be
found in the recent works [2,3,6,8,12,19,26].
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