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Abstract: We use mathematically rigorous perturbation theory to study the transition
between the Mott insulator and the conjectured Bose-Einstein condensate in a hard-core
Bose-Hubbard model. The critical line is established to lowest order in the tunneling
amplitude.

1. Introduction

Initially introduced in 1989 [9], the Bose-Hubbard model has been the object of much
recent work. It represents a simple lattice model of itinerant bosons which interact
locally. This model turns out to describe fairly well recent experiments with bosonic
atoms in optical lattices [12, 15]. Its low-temperature phase diagram has been uncov-
ered in several studies, both analytical (see e.g. [9, 10, 8]) and numerical [2, 19] ones.
When parameters such as the chemical potential or the tunneling amplitude are varied
the Bose-Hubbard model exhibits a phase transition from a Mott insulating phase to a
Bose-Einstein condensate. Figure. 2, below, depicts its ground state phase diagram.

In this paper, we investigate the phase diagram of this model in a mathematically
rigorous way. We focus on the situation with a small tunneling amplitude, t , and a small
chemical potential, µ. We construct the critical line between Mott and non-Mott behav-
ior to lowest order in the ratio t/µ. More precisely, we prove the existence of domains
with and without Mott insulator. These domains are separated by a comparatively thin
stretch; the domain without Mott insulator is widely believed to be a Bose condensate.
Our results establish in particular the occurrence of a “quantum phase transition” in the
ground state.

Over the years several analytical methods have been developed that are useful for
the study of models such as the Bose-Hubbard model. They include a general theory of
classical lattice systems with quantum perturbations [3, 5, 6, 16]. These methods can

� Collaboration supported in part by the Swiss National Science Foundation under grant 2-77344-03.



778 R. Fernández, J. Fröhlich, D. Ueltschi

be used to establish the existence of Mott phases for small t ; but they only apply to
domains of parameters far from the transition lines. The Bose-Hubbard model on the
complete graph can be studied rather explicitly and its phase diagram is similar to the
one of the finite-dimensional model [4]. Results using reflection positivity are mentioned
below and only apply to the hard-core model. A related model with an extra chessboard
potential was studied in [1] (see also [17]).

The Bose-Hubbard model is defined as follows. Let � ⊂ Z
d be a finite cube of

volume |�|. We introduce the bosonic Fock space

F� =
⊕

N�0

H�,N , (1.1)

where H�,N is the Hilbert space of symmetric complex functions on �N . Creation and
annihilation operators for a boson at site x ∈ � are denoted by c†

x and cx , respectively.
The Hamiltonian of the Bose-Hubbard model is given by

H = −t
∑

x, y ∈ �

|x − y| = 1

c†
x cy + 1

2U
∑

x∈�

c†
x cx

(
c†

x cx − 1
)
. (1.2)

The first term in the Hamiltonian represents the kinetic energy; the hopping parameter
t is chosen to be positive. The second term is an on-site interaction potential (assum-
ing each particle interacts with all other particles at the same site). The interaction is
proportional to the number of pairs of particles; the interaction parameter U is positive,
and this corresponds to repulsive interactions. In our construction of the equilibrium
state, we work in the grand-canonical ensemble. This amounts to adding a term −µN
to the Hamiltonian, where N = ∑

x c†
x cx is the number operator, and µ is the chemical

potential.
The limit U → ∞ describes the hard-core Bose gas where each site can be occupied

by at most one particle. This model is equivalent to the xy model with spin 1
2 in a mag-

netic field proportional to µ. Spontaneous magnetization in the spin model corresponds
to Bose-Einstein condensation in the boson model. The presence of a Bose condensate
has been rigorously established for µ = 0 (the line of hole-particle symmetry). See [7]
for a proof valid at low temperatures in three dimensions, and [14] for an analysis of
the ground state in two dimensions. The proofs exploit reflection positivity and infrared
bounds, a method that was originally introduced for the classical Heisenberg model in
[11]. At present, there are no rigorous results about the presence of a condensate for
µ �= 0, or for finite U .

The ground state phase diagram of the hard-core Bose gas is depicted in Fig. 1 and
reveals three regions: a phase with empty sites, a phase with Bose-Einstein condensa-
tion in dimension greater or equal to two, and a phase with full occupation. Particle-hole
symmetry implies that the phase diagram is symmetric around the axis µ = 0.

The critical value of the hopping parameter in the ground state of the hard-core (hc)
Bose gas is

thc
c (µ) = |µ|

2d
. (1.3)

This follows by observing that the cost of adding one particle in a state of vanishing
density (where interactions are negligible) is −µ − 2dt . For µ < −2dt the empty con-
figuration minimizes the energy, while for µ > −2dt a state with sufficiently low, but
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Fig. 1. Zero temperature phase diagram for the hard-core Bose gas. Bose-Einstein condensation is proved
on the line µ = 0, for any t > 0. Our perturbation methods provide a quantitative description of the Mott
insulator phases with density 0 and 1

positive density has negative energy. The Mott phases of the hard-core Bose gas at zero
temperature are stable because of the absence of ‘quantum fluctuations’ — the ground
state is just the empty or the full configuration. The hard-core model is an excellent
approximation to the general Bose-Hubbard model when t is small and µ is sufficiently
small.

A first insight into the ground state phase diagram of the general Bose-Hubbard
model is obtained by restricting the Hamiltonian to low energy configurations. Namely,
for −∞ < µ � 1

2U , low energy states have 0 or 1 particle per site. The restricted model
is the hard-core Bose gas. Next, for 1

2U � µ � 3
2U , states of lowest energy have 1 or 2

particles per site. The restricted model is again a hard-core Bose gas, but with effective
hopping equal to 2t . We can define projections onto subspaces of low energy states for
all µ; corresponding restricted models yield the following approximation for the critical
hopping parameter:

tapprox
c (µ) =






|µ|
2d

if − ∞ < µ < 1
2U,

|µ − kU |
2d(k + 1)

if (k − 1
2 )U < µ < (k + 1

2 )U, k � 1,
(1.4)

(thin lines in Fig. 2). The true critical line tc(µ) agrees with tapprox
c (µ) up to corrections

due to quantum fluctuations. We expect that

tc(µ) = tapprox
c (µ)

(
1 + O

( t
U

))
. (1.5)

In order to state our first result, we recall that the pressure p(β, µ) is defined by

p(β, µ) = lim
�↗Zd

1

|�| log Tr F�
e−β(H−µN ). (1.6)

Here the limit is taken over a sequence of boxes of increasing size; standard arguments
ensure its existence. Its derivative with respect to the chemical potential is the density; i.e.,

ρ(β,µ) = 1

β

∂

∂µ
p(β, µ). (1.7)

The zero density phase is simpler to analyze because of the absence of quantum fluctu-
ations. The following theorem holds uniformly in U , and therefore also applies to the
hard-core model.
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Fig. 2. Zero temperature phase diagram for the Bose-Hubbard model. Lobes are incompressible phases with
integer densities. Thin lines represent the approximate critical line defined in (1.4)

Theorem 1.1 (Zero density phase). For µ < −2dt, there exists β0 such that if β > β0,
we have that

(a) the pressure is real analytic in β,µ;
(b) ρ(β,µ) < e−aβ .

Here, a > 0 depends on t, µ, d, but it is uniform in β and U.

This theorem is proven in Sect. 2.
The transition lines between the Mott phases of density ρ � 1 and the Bose-Einstein

condensate are much harder to study because of the presence of quantum fluctuations.
We consider a simplified model with a generalized hard-core condition that prevents
more than two bosons from occupying a given site. The Hamiltonian is still given by
(1.2), but it acts on the Hilbert space spanned by the configurations {0, 1, 2}�. The phase
diagram of this model is depicted in Fig. 3. This model is the simplest one exhibiting a
phase with quantum fluctuations. Notice that, in the limit U → ∞, this model coincides
with the usual hard-core model. The zero-density phase and the ρ = 2 phase are char-
acterized by Theorem 1.1. The transition line of the ρ = 1 phase is more complicated.
The following theorem shows that it is equal to µ/2d to first order in t/U , as in the
hard-core model.

Theorem 1.2 (Mott phase ρ = 1 in generalized hard-core model). Assume that

0 < µ < U
4 and t <

µ
2d − const t2

U (with const � 211d). Then there exist β0 and
a > 0 (depending on d, t, µ, U) such that if β > β0, we have that

(a) the pressure is real analytic in β,µ;
(b) |ρ(β,µ) − 1| < e−aβ .

The critical line is expected to be close to t = µ
2d for small t, µ, so that our condition

agrees to first order in t . While we do not state and prove it explicitly, a similar claim
holds around 4dt = µ − U . Indeed, the ρ = 1 phase prevails for t � U−µ

4t for small
t . The “quantum Pirogov-Sinai theory” of references [3, 5] applies here and allows to
establish the existence of a Mott insulator for low t . Proving that the domain extends
almost to the line t = µ

2d requires additional arguments, however; Theorem 1.2 is proved
in Sect. 3. The generalized hard-core condition considerably simplifies the proof. Indeed,
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Fig. 3. Zero temperature phase diagram for the Bose-Hubbard model with the generalized hard-core condition

it allows for a cute and convenient representation of the grand-canonical partition func-
tion in terms of a gas of non-overlapping oriented space-time loops, see Fig. 4 in Sect. 3.
The result is nevertheless expected to hold for the regular Bose-Hubbard model as well.

While we cannot establish the presence of a Bose-Einstein condensate, we can prove
the absence of Mott insulating phases away from the critical lines, by establishing bounds
on the density of the system.

Theorem 1.3 (Absence of Mott phases).

(a) For t > − µ
2d and for any � large enough, the density of the ground state is bounded

below by a strictly positive constant, that depends on t, µ but not on �. This applies
to the model with or without hard-core condition.

(b) Consider the model with generalized hard cores. For t >
µ
2d + Ct ( t

U )
2

d+2 and for
any � large enough, the density of the ground state is less than a constant that is
strictly less than 1; it depends on t, µ but not on �.

This theorem is proved in Sect. 4. It is shown that C � d+2
2d (210dπd)

2
d+2 .

Quantum fluctuations have some influence on the phase diagram, and a detailed dis-
cussion is necessary. “Quantum fluctuations” are fluctuations in the ground state around
the constant configuration with k bosons at each site, for some k depending on µ and
t . They are present in Mott phases for k � 1, while the ground state for µ < −2dt is
simply the empty configuration. Quantum fluctuations are not present in effective hard-
core models where each site is allowed either k or k + 1 bosons. Their presence lowers
the energy of both Mott and Bose condensate states. The key question is which phase
benefits most from them. In other words, writing the critical hopping parameter as

tc(µ) = tapprox
c (µ)

(
1 + a( t

U )
)
, (1.8)

the question is about the sign of a( t
U ), for small t

U .
The study in [10], based on expansion methods (no attempt at a rigorous control of

convergence is made), suggests a rather surprising answer: the sign of a( t
U ) depends on

the dimension! Namely, the quantum fluctuations favor Mott phases for d = 1, and they
favor the Bose condensate for d � 2. We expect that this question can be rigorously
settled by combining the partial diagonalization method of [6] with our expansions in
Sect. 3.
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2. Low-Density Expansions

In this section, we present a Feynman-Kac expansion of the partition function adapted to
the study of quantum states that are perturbations of the zero density phase. In this situa-
tion, quantum effects are reduced to a minimum, amounting basically to the combinator-
ics related to particle indistinguishability. Nevertheless, the resulting cluster expansion
must deal with two difficult points: arbitrarily large numbers of bosons and closeness to
the transition line. Both difficulties are resolved by estimating the entropy of space-time
trajectories in a way inspired by Kennedy’s study of the Heisenberg model [13] — the
present situation being actually simpler.

The grand-canonical partition function of the Bose-Hubbard model is given by

Z(β,�,µ) = Tr e−β(H−µN ), (2.1)

where the trace is taken over the bosonic Fock space. A standard Feynman-Kac expan-
sion yields an expression for Z in terms of “space-time trajectories”, i.e. continuous-time
nearest-neighbor random walks. More precisely,

Z(β,�,µ) =
∑

N�0

eβµN

N !
∑

x1,...,xN ∈�

∑

π∈SN

∫
dνβ

x1xπ(1)
(θ1) . . .

∫
dνβ

xN xπ(N )
(θN )

∏

1�i< j�N

exp
{
−U

∫ β

0
δθi (τ ),θ j (τ )dτ

}
. (2.2)

Here, θ denotes a space-time trajectory, i.e. θ is a map [0, β] → � that is constant
except for finitely many “jumps” at times 0 < τ1 < · · · < τm < β, and

|θ(τ j−) − θ(τ j +)| = 1.

The “measure” ν
β
xy on trajectories starting at x and ending at y introduced in Eq. (2.2)

is a shortcut for the following operation. If f is a function on trajectories, then
∫

dνβ
xy(θ) f (θ) =

∑

m�0

tm
∑

x1, . . . , xm−1
|x j − x j−1| = 1

∫

0<τ1<···<τm<β

dτ1 . . . dτm f (θ). (2.3)

The second sum is over nearest-neighbor sites such that |x1 − x | = |xm−1 − y| = 1.
The trajectory θ on the right side of (2.3) is given by

θ(τ ) = x j for j ∈ [τ j , τ j+1),

where (x0, τ0) = (x, 0) and (xm, τm+1) = (y, β). The underlying trace operation con-
strains the ensemble of trajectories to satisfy a periodicity condition in the “β-direction”.
The initial and final particle configurations must be identical, modulo particle indistin-
guishablity. This explains the sum over permutations of N elements, π ∈ SN , on the
right side of (2.2).

We shall rewrite the expresssion (2.2) for the partition function in a form that fits into
the framework of cluster expansions. The main result of cluster expansions is summa-
rized in the appendix, and it is enough for our purpose.

Trajectories are correlated because of (i) the interactions in the exponential factors of
(2.2) which penalize intersections, and (ii) the permutations linking initial and final sites
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of different trajectories. The cluster expansion is designed to handle the former factors,
but we need to deal first with the latter issue so to fall into the required framework. To
this end, we concatenate each original trajectory with the one starting at its final site, so
as to obtain a single closed trajectory that wraps several times around the β axis. Hence,
instead of open trajectories [0, β] → �, we consider ensembles of closed trajectories
θi : [0, �iβ] → �, with �i being their winding number. Each such closed trajectory
corresponds to a cycle of length �i of the permutation π determined by the endpoints
of the component open trajectories. For each cycle, the sum over �i sites in � and the
integrals over the �i enchained open trajectories can be written as a sum over a single site
xi , followed by an integral over closed trajectories with θi (0) = θ(�iβ) = xi . Recalling
that there are

1

k!
N !

∏k
i=1 �i

permutations with k cycles of lengths �1, . . . , �k , we obtain the following expansion of
the partition function in terms of closed trajectories instead of particles:

Z(β,�,µ) =
∑

k�0

1

k!
∑

x1,...,xk∈�

∑

�1,...,�k�1

∫
dν�1β

x1x1
(θ1) . . .

∫
dν�kβ

xk xk
(θk)

k∏

i=1

w(θi )
∏

1�i< j�k

(
1 − ζU (θi , θ j )

)
. (2.4)

Let �(θ) denote the winding number of the trajectory θ : [0, �(θ)β] → �. Its weight is
defined by

w(θ) = 1
�(θ)

eβµ�(θ) exp
{−U W (θ)

}
. (2.5)

Here, W (θ) measures the self-intersection of θ , that is,

W (θ) =
∑

0�i< j��(θ)−1

∫ β

0
δθ(iβ+τ),θ( jβ+τ)dτ. (2.6)

It will suffice to use the bound w(θ) � 1
�(θ)

eβµ�(θ). Finally, interactions between trajec-
tories θ and θ ′ are given by

ζU (θ, θ ′) = 1 − exp
{−U W (θ, θ ′)

}
. (2.7)

Here, W (θ, θ ′) measures the overlap between trajectories θ and θ ′,

W (θ, θ ′) =
�(θ)−1∑

i=0

�(θ ′)−1∑

j=0

∫ β

0
δθ(iβ+τ),θ ′( jβ+τ)dτ. (2.8)

Expression (2.4) is suited for an application of Theorem A.1. We show that the weights
w(θ) are small in the sense that they satisfy the “Kotecký-Preiss criterion” (A.4).
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Proposition 2.1. For each closed trajectory θ let j (θ) denote the number of jumps of θ .
Then, there exist constants a, b > 0 such that

∑

�′�1

eβµ�′

�′
∑

x∈�

∫
dν�′β

xx (θ ′)eaj (θ ′)+βb�′
ζU (θ, θ ′) � aj (θ) + βb�(θ).

Proof. Since ζU (θ, θ ′) is increasing in U , it is enough to prove that, for any trajectory
θ ,

∑

�′�1

eβ(µ+b)�′

�′
∑

x

∫
dν�′β

xx (θ ′) eaj (θ ′) ζ∞(θ, θ ′) � aj (θ) + βb�(θ) , (2.9)

with

ζ∞(θ, θ ′) = χ
[
θ(iβ + τ) = θ ′(kβ + τ) for some 0 � i � �(θ) − 1,

0 � k � �(θ ′) − 1, 0 < τ < β
]

.

Here, χ [·] denotes the characteristic function of the event in brackets.
A trajectory θ ′ intersects θ if a jump of θ ′ intersects a vertical line of θ , or if a jump

of θ intersects a vertical line of θ ′ (or both). Let ν
β
0 denote the measure on trajectories

[0, β] → Z
d , starting at x = 0 and with a jump at τ = 0. integration with respect to ν

β
0

can be defined similarly as in (2.3); formally, we can also write
∫

dν
β
0 (θ) f (θ) =

∫
dν

β
00(θ)δ(τ1) f (θ), (2.10)

where ν
β
00 is as in (2.3) (with x = y = 0), and where the Dirac function δ(τ1) forces the

first jump to occur at τ1 = 0. We get an upper bound by neglecting the restriction that
trajectories need to remain in �. The left side of (2.9) is then bounded by

j (θ)
∑

�′�1

eβ(µ+b)�′

�′

∫
dν

�′β
00 eaj (θ ′) + β�(θ)

∑

�′�1

eβ(µ+b)�′

�′

∫
dν

�′β
0 eaj (θ ′). (2.11)

The first term accounts for trajectories θ ′ intersecting jumps of θ ; the second term
accounts for trajectories θ ′ involving a jump that intersects a vertical line of θ . We inte-
grate over all trajectories [0, �′β] → Z

d that start at x = 0, without requiring them to
stay in �.

Each trajectory θ ′ in the last integral of (2.11) can be decomposed into the jump from
a neighbor z into 0, which contributes a factor tea (see definition (2.3)), plus a trajectory
from z′ to 0. As 0 has 2d neighbors we see that

∫
dν

�′β
0 (θ ′) eaj (θ ′) � 2dtea

∫
dν

�′β
z0 (θ ′) eaj (θ ′) . (2.12)

Furthermore, the definition (2.3) implies that for every x, y,
∫

dν�′β
xy (θ ′) eaj (θ ′) =

∑

m�0

(tea)m
∑

x1, . . . , xm−1|x j − x j−1| = 1
|x1 − x | = |y − xm−1| = 1

∫

0<τ1<···<τm<�′β
dτ1 . . . dτm

≤ etea2d�′β . (2.13)



Mott Transition in Lattice Boson Models 785

From (2.9), (2.11), (2.12) and (2.13) we conclude that

∑

�′�1

eβ(µ+b)�′

�′
∑

x

∫
dν�′β

xx (θ ′) eaj (θ ′) ζ∞(θ, θ ′)

≤ (
j (θ) + 2dteaβ�(θ)

) ∑

�′�1

exp
{
β�′[µ + 2dtea + b]}. (2.14)

As µ + 2dt < 0, we can choose a and b such that µ + 2dtea + b < 0. Then (2.9) holds
for β large enough. 	

Proof of Theorem 1.1. Recall expression (1.6) for the pressure. Proposition 2.1 estab-
lishes the convergence of cluster expansions, as stated in Theorem A.1. With ϕ denoting
the usual combinatorial function of cluster expansions, see (A.2), the partition function
has the absolutely convergent expression

Z(β,�,µ) = exp
{∑

m�1

∑

x1,...,xm∈�

∑

�1,...,�m�1

∫
dν�1β

x1x1
(θ1)

. . .

∫
dν�mβ

xm xm
(θm) ϕ(θ1, . . . , θm)

m∏

j=1

w(θ j )
}
. (2.15)

Taking the logarithm and dividing by the volume, standard arguments show that bound-
ary terms vanish in the thermodynamic limit, and we obtain

p(β, µ) =
∑

m�1

∑

x2,...,xm∈Zd

∑

�1,...,�m�1

∫
dν

�1β
00 (θ1)

∫
dν�2β

x2x2
(θ2)

. . .

∫
dν�mβ

xm xm
(θm) ϕ(θ1, . . . , θm)

m∏

j=1

w(θ j ). (2.16)

Integrals can be viewed as functions of β,µ, indexed by m, (xi ), and (�i ). They are
real analytic in the domain (β, µ) : β > β0(µ). Their sum is absolutely convergent and
Vitali’s convergence theorem implies that p(β, µ) is analytic.

Recall that the density is given by the derivative of the pressure with respect to the
chemical potential; see (1.7) for the precise definition. The analyticity implied by the
expansion allows for term-by-term differentiation. We can check that

ρ(β,µ) =
∑

�1�1

∫
dν

�1β
00 (θ1)

∂w(θ1)

∂µ

∑

m�1

m
∑

x2,...,xm∈Zd

∑

�2,...,�m�1

∫
dν�2β

x2x2
(θ2) . . .

∫
dν�mβ

xm xm
(θm) ϕ(θ1, . . . , θm)

m∏

j=2

w(θ j ). (2.17)

Note that ∂
∂µ

w(θ) = β�(θ)w(θ), as follows from definition (2.5) of the weight of tra-
jectories. By (A.5), we have the bound

ρ(β,µ) � β
∑

�1�1

�1

∫
dν

�1β
00 (θ)w(θ)ea(θ). (2.18)
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There exists ε > 0 such that µ + 2dtea + b + ε < 0. Using (2.13), we get

ρ(β,µ) � βe−εβ
∑

�1�1

�1eβ�1[µ+2dtea+b+ε]. (2.19)

Then ρ(β,µ)�e−εβ for β large enough, and this completes the proof of Theorem 1.1. 	


3. Space-Time Loop Representation

The study of the transition line for the Mott phase with unit density requires the analysis
of perturbations of the “vacuum” formed by one particle at each site. This involves the
control of full-fledged quantum fluctuations. We turn, then, to a more general expansion
setting previously employed to study spin and fermionic systems [3, 5]. This setting
shares some similarities with that of Sect. 2, but it also differs from it in significant
ways. We use the same symbols ν,w, ζ, �, θ , but we caution the reader that they are
defined in slightly different ways. Besides the quantum-fluctuation issue, bosonic sys-
tems present the additional complication of the unboundedness of occupation numbers.
In the present paper we wish to leave this second issue aside. We consider, thus, the
model with a generalized hard-core condition that ensures that configurations have at
most two bosons at each site.

Recall definition (2.1) of the grand-canonical partition function. It is convenient to
write

H − µN = V + T, (3.1)

where V denotes the diagonal terms (i.e., interactions and chemical potential terms) in
the basis of occupation numbers in position space, and T denotes the hopping terms.
We will consider T to be a perturbation of V . Our expansion is based on Duhamel’s
formula,

e−β(V +T ) = e−βV +
∫ β

0
dτ e−τ V (−T ) e−(β−τ)(V +T ), (3.2)

which we can iterate to obtain

e−β(V +T ) =
∑

m�0

∫

0<τ1<...<τm<β

dτ1 . . . dτm e−τ1V (−T )e−(τ2−τ1)V . . . (−T )e−(β−τm )V .

(3.3)

Then

Z(β,�,µ) = Tr e−β(V +T ) =
∑

m�0

tm
∫

0<τ1<...<τm<β

dτ1 . . . dτm

∑

(x1,y1),...,(xm ,ym )

Tr e−τ1V c†
x1

cy1 e−(τ2−τ1)V . . . c†
xm

cym e−(β−τm )V . (3.4)

We denote by n = (nx )x∈�, nx ∈ N, a “classical configuration” that represents the
state where nx bosons are located at site x , and |n〉 the corresponding normalized vector.
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Inserting projector decompositions 1 = ∑
ni

|ni 〉〈ni | the trace can be written as

Tr e−τ1V c†
x1

cy1 e−(τ2−τ1)V . . . c†
xm

cym e−(β−τm )V

=
∑

n0,n1,...,nm

〈n0| e−τ1V c†
x1

cy1 |n1〉〈n1| e−(τ2−τ1)V . . . c†
xm

cym |nm〉 (3.5)

×〈nm | e−(β−τm )V |n0〉 .

As the operator V is diagonal in the base |n〉, this decomposition allows us to rewrite
the expansion (3.4) in the form

Z(β,�,µ) =
∫

dν(n) w(n) , (3.6)

where

(i) n is a space-time quantum configuration, namely an assignment of a configuration
n(τ ), for each 0 < τ < β, such that
– n is constant in τ , except at finitely many times τ1 < · · · < τm , with m even.
– At each τi , a “jump” occurs, i.e. there are nearest-neighbor sites (xi , yi ) such

that

nx (τi +) =






nx (τi−) + 1 if x = xi ,

nx (τi−) − 1 if x = yi ,

nx (τi−) otherwise.
(3.7)

– n is periodic in the τ direction: n(β) = n(0).
(ii) w(n) are positive weights defined by

w(n) = exp
{
−

∫ β

0
V (n(τ )) dτ

} m∏

i=1

[
t
√

nxi (τi +)nyi (τi−)
]
, (3.8)

with the short-hand notation V (n) ≡ 〈n| V |n〉.
(iii) Integration with respect to the “measure” ν on quantum configurations stands for

a sum over configurations at time 0, a sum over m, integrals over jumping times,
and sums over locations of jumps.

The expansion just obtained is rather general. It is convenient to interpret it in terms
of random geometrical objects in a model-dependent fashion. For the case of interest
here, we follow the “excitations”, namely the sites where the occupation number is
different from the vacuum value 1. We therefore embed the “space time” � × [0, β]
in the cylinder R

d × S1 (with periodic boundary conditions in the time direction) and
decompose the trajectories of the excitations in connected components. In this way, a
quantum configuration n can be represented as a set of non-intersecting loops (with
winding numbers n = 0,±1,±2, . . . ) in this cylinder. The representation is defined by
the following rules:

• The constant configuration n with nx (τ ) = 1, for all x ∈ � and 0 � τ � β, has no
loops.

• A jump of a boson from yi to xi at time τi (see (3.7)) is represented by a horizontal
arrow from (yi , τi ) to (xi , τi ).
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• The points (x, τ ) with nx (τ ) �= 1 are represented by vertical segments. These seg-
ments point upwards if nx (τ ) = 2, and downwards if nx (τ ) = 0.

Loops are illustrated in Fig. 4. Similar representations have been used in various contexts,
e.g. in a study of the Falicov-Kimball model [18].

Given a loop γ , we introduce the number of jumps j (γ ) (always an even number,
possibly zero); the length �0(γ ) of all vertical segments pointing downwards; the length
�2(γ ) of all vertical segments pointing upwards; �(γ ) = �0(γ )+�2(γ ); and the winding
number z(γ ). Notice that �2(γ ) − �0(γ ) = βz(γ ). A loop γ defines a unique quantum
configuration nγ . We define the weight of a loop as

w(γ ) = t j (γ )

j (γ )∏

i=1

√
nγ

yi (τi−)nγ
xi (τi +) e−�0(γ )µe−�2(γ )(U−µ). (3.9)

Note that we have subtracted the classical energy of the background configuration with
one boson at each site. The weight w(γ ) thus only depends on excitation energies.

These definitions allow us to rewrite the partition function (3.6) in terms of loops
and their weights instead of space-time configurations. Unlike the trajectories of Sect. 2,
the loops here have only a hard-core interaction due to the requirement of non-intersec-
tion. Furthermore, if � = {γ1, . . . , γm} is a set of disjoint loops, we have the important
property that the weight of the corresponding quantum configuration n� factorizes,

w(n�) = eβµ|�|
m∏

i=1

w(γi ). (3.10)

We define a measure on loops, also denoted ν, and we rewrite the partition function as

Z(β,�,µ) = eβµ|�| ∑

m�0

1

m!
∫

dν(γ1) . . .

∫
dν(γm)

m∏

i=1

w(γi )
∏

1�i< j�m

(
1 − ζ(γi , γ j )

)
.

(3.11)

Here, the term corresponding to m = 0 is set to eβµ|�|, and the function ζ(γ, γ ′) equals
1 if the loops γ and γ ′ intersect (more precisely, if some of their vertical segments
intersect), and equals 0 if the loops have disjoint support.

2
2

b

Λ
2

2

0

0

0

0

0

2

2

2
0 2

Fig. 4. Illustration for the gas of space-time loops. There are three loops with respective winding numbers
1,0, and -1
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The expression (3.11) for the partition function is an adequate starting point for the
method of cluster expansions. We prove that the weights are small so as to satisfy the
“Kotecký-Preiss criterion”, Eq. (A.4). We can then appeal to Theorem A.1 to conclude
that the cluster expansion converges.

Proposition 3.1. Under the hypotheses of Theorem 1.2, we have that, for any loop γ ,
∫

dν(γ ′) w(γ ′) ζ(γ, γ ′) ea(γ ′) � a(γ )

with

a(γ ) = 214d t2

U 2 j (γ ) + 212d t2

U �(γ ). (3.12)

Its proof relies on the bounds stated in the following lemma. Let us partition the set
of loops into L = L(0+) ∪ L(−), where L(0+) (resp. L(−)) is the set of loops with non-
negative (resp. negative) winding numbers. For each site z we introduce the measures
νz on loops that make a jump at time τ = 0 involving z. Further, we let Lz , L(0+)

z , and
L(−)

z denote the sets of loops that contain (z, 0).

Lemma 3.2. Under the hypotheses of Theorem 1.2, for any site z,

(a)
∫
L(0+) dνz(γ )w(γ ) ea(γ ) � 211d t2

U ,

(b)
∫
L(0+)

z
dν(γ ) w(γ ) ea(γ ) � e−β(U−µ−212d t2

U ) + 213d t2

U 2 ,

(c)
∫
L(−) dνz(γ )w(γ ) ea(γ ) � 4dt e−β(µ−2dt−212d2 t2

U ),

(d)
∫
L(−)

z
dν(γ )w(γ ) ea(γ ) � e−β(µ−2dt−212d2 t2

U ).

Proof of Proposition 3.1. Suppose that the loops γ and γ ′ intersect, i.e. ζ(γ, γ ′) = 1.
Then either a jump of γ ′ intersects a vertical line of γ , or a jump of γ intersects a vertical
line of γ ′ (both may happen at the same time). The first situation is analyzed using the
measures νz , and the second situation involves the sets L(0+)

z and L(−)
z . More precisely,

we have that
∫

dν(γ ′) w(γ ′) ζ(γ, γ ′) ea(γ ′) (3.13)

� �(γ ) sup
z

∫

L
dνz(γ

′) w(γ ′) ea(γ ′) + j (γ ) sup
z

∫

Lz

dν(γ ′) w(γ ′) ea(γ ′) .

Using the estimates in Lemma 3.2, the right side is seen to be smaller than a(γ ), provided
β is large enough. 	

Proof of Lemma 3.2, (a) and (b). Loops of L(0+) have large energy cost, so crude en-
tropy estimates are enough. Since �2(γ ) � �0(γ ) for any loop γ ∈ L(0+), we have that
µ�0(γ ) + (U − µ)�2(γ ) � 1

2U�(γ ). Then

µ�0(γ ) + (U − µ)�2(γ ) − 212d t2

U �(γ ) � 1
4U�(γ ). (3.14)

Further, we can check that

e214dt2/U 2
< 2 . (3.15)
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From these observations and (3.9), we obtain that

w(γ )ea(γ ) �





e−β(U−µ−212d t2

U ) if j = 0

(4t) j (γ ) e− 1
4 U�(γ ) if j � 2.

(3.16)

A loop with j (γ ) = 2n is characterized by a sequence of jump times 0 � τ1 < τ2 <

· · · < τ2n . At each such time the trajectory can choose among at most 2d neighbors to
jump to and 2 directions of time to proceed after the jump. The last jump is determined
by the fact that γ must be a loop, so there is no factor 2d (but both time directions are
possible). The measure νz involves only loops with two jumps or more. From the last
bound in (3.16) we obtain

∫

L(0+)

dνz(γ )w(γ ) ea(γ ) �
∑

n�1

2 · 22n(2d)2n−1(4t)2n
(∫ ∞

0
dτ e− 1

4 Uτ

)2n−1

= 210dt2/U

1 − ( 26dt
U )2

� 211d t2

U . (3.17)

Part (b) of the lemma follows from (3.16) and from considerations similar to (3.17).
Namely,
∫

L(0+)
z

dν(γ )w(γ ) ea(γ ) � e−β(U−µ−212d t2
U )

+
∑

n�1

2 · 22n(2d)2n−1(4t)2n
(∫ ∞

0
dτ e− 1

4 Uτ

)2n

. (3.18)

The first term in the right side represents loops without jumps. The right side is less than
the upper bound in Lemma 3.2 (b). 	

Proof of Lemma 3.2, (c) and (d). Loops of L(−) have small energy cost when parame-
ters are close to the transition line. Estimates are needed that are more subtle than for
loops of L(0+). The situation is similar to that of Sect. 2, but a problem needs to be solved:
Loops, unlike trajectories, can backtrack in time. Our strategy is to first “renormalize” a
loop γ ∈ L(−) by identifying a trajectory θ = θ(γ ) that moves only downwards, but with
arbitrarily long jumps. Contributions of backtracking can be controlled by similar esti-
mates as above. The entropy of these trajectories can be expressed using an appropriate
hopping matrix and we obtain sharp enough bounds.

We start with (d). Given a loop γ ∈ L(−)
0 , we start at (x, τ ) = (z, β) and move down-

wards along γ . When reaching the end of a vertical segment (because of the presence
of a nearest-neighbor jump), we ignore possible backtracking and directly jump to the
next downwards vertical segment in the loop, at constant time. See the dotted lines in
Fig. 4. We obtain a trajectory, since the motion is downwards only, punctuated by with
long-range hoppings with which we must cope.

Behind a hop from x to y there is a backtracking excursion between these sites. Its
contribution to the total weight of the original loop (times ea(γ )) is given by the “hopping
matrix” component

σxy =
∫

x→y
dνx (γ )w(γ )ea(γ ), (3.19)
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where the integral is over loops that are open, have nonnegative winding number, start
with a jump at (x, 0), and end at (y, 0).

Each trajectory so constructed is characterized by a sequence of hopping times
0 = τ1 < · · · < τ2m ≤ β and a sequence of not-necessarily neighboring sites
x = x0, x1, . . . , xm = x which are the successive hopping endpoints. Its weights are
determined by factors exponentially decreasing with �0 for each vertical segment and
hopping matrix entries for each jump. In this way we obtain

∫

L(−)
z

dν(γ )w(γ ) ea(γ ) � e−β(µ−212d t2
U )

∑

m�0

βm

m!
∑

x1, · · · , xm−1
x0 = xm = z

m∏

i=1

σxi xi−1

� e−β(µ−212d t2
U ) eβ

∑
x �=0 σ0x . (3.20)

The overall exponential factor comes from the fact that �0 � β because the winding
number of the loops is not zero. The factor βm/m! follows by integrating all choices of
hopping times.

To conclude, we must bound the sum of the matrix elements of σ . The contribution

of open loops that consist in just one jump is 2dte214d t2

U2 . Other open loops involve
two jumps or more. Each jump has 2d possible directions. There are two possible time
directions after each jump, except for the first and last ones. We need to integrate over
time occurrence for each jump except the first one. We obtain

∑

x �=0

σ0x � 2dt e214d t2

U2 +
∑

m�2

(2d)m2m−2(4t)m
(∫ ∞

0
e− 1

4 Uτ dτ

)m−1

� 2dt e214d t2

U2 + 29d2 t2

U . (3.21)

We used (3.15). Inserting into (3.20) we obtain Lemma 3.2 (d). The bound of part (c) is

similar, with an extra factor 2dte214d t2

U2 � 4dt for the additional first jump. 	

Proof of Theorem 1.2. This proof is similar to the one of Theorem 1.1. We use cluster
expansions, in order to get a convergent expansion for the pressure, and prove analyticity
by using Vitali’s theorem. The density has an expansion reminiscent of (2.17), namely

ρ(β,µ) = 1 +
∫

L0

dν(γ1)
∂w(γ1)

∂µ

∑

m�1

m
∫

dν(γ2) . . .

∫
dν(γm)ϕ(γ1, . . . , γm)

m∏

i=2

w(γ j ). (3.22)

The combinatorial function ϕ is given by (A.2). From (3.9)

∂w(γ1)

∂µ
= [�2(γ ) − �0(γ )]w(γ ). (3.23)

Again using Eq. (A.5), we find the bound

|ρ(β,µ) − 1| �
∫

L0

dν(γ )
∣∣�2(γ ) − �0(γ )

∣∣w(γ )ea(γ ). (3.24)
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Only loops with nonzero winding number contribute. Going over the proof of Lemma 3.2
(b) and (d) with a(γ ) → a(γ )+log �(γ ), we can check that the right side of the equation
above is less than e−εβ whenever µ− 2dt − 212d2 t2

U − ε > 0 and β is large enough. 	


4. Density Bounds

Proof of Theorem 1.3, (a). The Bose-Hubbard Hamiltonian preserves the total number
of particles, so that the density can be fixed. We denote by e0(ρ) the ground state energy
per site in the subspace of density ρ. Neglecting repulsive interactions can only decrease
the ground state energy; the minimum kinetic energy of a single boson is −2dt . It follows
that e0(ρ) � (−µ − 2dt)ρ for all U � 0.

We find an upper bound for e0(ρ) by using a variational argument. It is well-known
that the symmetric ground state is also the absolute ground state, so that we can consider a
non-symmetric trial function. We decompose � into boxes of size � = �ρ−1/d�. We con-
sider the trial function ⊗N

j=1ϕ j , where ϕ j is supported in the j th box only and minimizes
the kinetic energy. As is well-known, ϕ j is the ground state of the Dirichlet problem in
the box, and the corresponding eigenvalue is −2dt cos π

�+1 . Since � + 1 � ρ−1/d and

cos x � 1 − x2

2 , this eigenvalue is less than −2dt + dt (πρ1/d)2. This implies that

e0(ρ) � b(ρ) ≡ (−µ − 2dt)ρ + π2dtρ1+ 2
d . (4.1)

The minimum of b(ρ) is reached for ρ2/d = µ+2dt
π2t (d+2)

. The minimum value is

c = − 2

(π2t)
d
2

(µ + 2dt

d + 2

)1+ d
2
. (4.2)

By inspecting Fig. 5 we find that the ground state density is necessarily larger than

a = 2

d + 2

( µ + 2dt

π2t (d + 2)

)d/2
. (4.3)

	

Proof of Theorem 1.3, (b). The strategy is the same as for part (a), although quantum
fluctuations bring extra complications. The variational argument leading to the upper
bound for e0(ρ) can be modified by replacing particles with holes, so as to yield

e0(ρ) � b̃(ρ) ≡ −µ + (µ − 2dt)(1 − ρ) + π2dt (1 − ρ)1+ 2
d . (4.4)

The lower bound is trickier. We fix the density ρ and work in the Hilbert space H�,N
with N = ρ|�|. We have that

e0(ρ) = − lim
�↗Zd

lim
β→∞

1
β|�| log Tr H�,N e−β(H−µN ). (4.5)

We can use the loop representation of Sect. 3 for the trace to obtain an expression similar
to (3.11); the difference is that we require the sum of winding numbers of all loops to
be equal to the negative of the number of holes M = |�| − N .

The weights of loops with strictly positive winding numbers decays exponentially as
e−β(U−µ), so they do not contribute in the limit β → ∞. We obtain an upper bound for
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a

c

e (r)

(– m – 2dt)r

b(r)

r

Fig. 5. Upper and lower bounds for the ground state energy per site, e0(ρ). The density that minimizes e(ρ)

necessarily satisfies ρ � a

Z(β,�,µ) (and therefore a lower bound for e0(ρ)) by neglecting the non-intersecting
conditions between loops. Further, we replace the loops γ with negative winding num-
bers by trajectories θ as in the proof of Lemma 3.2 (c), (d). We then obtain the lower
bound

e0(ρ) � −µρ − lim
�↗Zd

lim
β→∞

1
β|�| log Tr H�,M e−β T̃

− lim
�↗Zd

lim
β→∞

1
β|�|

∫

L(0)

dν(γ )w(γ ). (4.6)

Here, T̃ denotes the multibody kinetic operator

T̃ =
∑

x,y

σ(x − y)c†
x cy, (4.7)

and σ(x) is given in (3.19). Then, by (3.21),

lim
β→∞

1
β

log Tr H�,M e−β T̃ �
[
2dt + 210d2 t2

U

]
M. (4.8)

The contribution of nonwinding loops is bounded using Lemma 3.2 (a),

1

β|�|
∫

L(0)

dν(γ )w(γ ) �
∫

L(0)

dν0(γ )w(γ ) � 211d t2

U . (4.9)

We have shown that

e0(ρ) � −µ − (2dt − µ + 210d2 t2

U )(1 − ρ) − 211d t2

U . (4.10)

From here on we proceed as before. The minimum of b̃(ρ) is −µ− 2
(π2t)d/2 (

2dt−µ
d+2 )1+d/2.

The ground state density then satisfies

1 − ρ �
2

(π2t)d/2

(
2dt−µ

d+2

)1+d/2 − 211d t2

U

2dt − µ + 210d2 t2

U

. (4.11)

One finds the condition of Theorem 1.3 by requiring that the numerator be strictly
positive. 	
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Appendix A. Cluster Expansions

This appendix contains the main theorem of [20] for the convergence of cluster expan-
sions. It allows for an uncountable set of “polymers”, so that it applies here.

Let (A,A, µ) be a measure space with µ a complex measure. We suppose that
|µ|(A) < ∞, where |µ| is the total variation (absolute value) of µ. Let ζ be a complex
measurable symmetric function on A × A. Let Z be the partition function:

Z =
∑

n�0

1

n!
∫

dµ(A1) . . .

∫
dµ(An)

∏

1�i< j�n

(
1 − ζ(Ai , A j )

)
. (A.1)

The term n = 0 of the sum is understood to be 1.
We denote by Gn the set of all (unoriented) graphs with n vertices, and Cn ⊂ Gn the

set of connected graphs of n vertices. We introduce the following combinatorial function
on finite sequences (A1, . . . , An) of A:

ϕ(A1, . . . , An) =
{

1 if n = 1
1
n!

∑
G∈Cn

∏
(i, j)∈G [−ζ(Ai , A j )] if n � 2.

(A.2)

The product is over edges of G. A sequence (A1, . . . , An) is a cluster if the graph with
n vertices and an edge between i and j whenever ζ(Ai , A j ) �= 0, is connected.

Convergence of cluster expansion is guaranteed provided the terms in (A.1) are small
in a suitable sense. First, we assume that

|1 − ζ(A, A′)| � 1 (A.3)

for all A, A′ ∈ A. Second, we need that the “Kotecký-Preiss criterion” holds true.
Namely, we suppose that there exists a nonnegative function a on A such that for all
A ∈ A,

∫
d|µ|(A′) |ζ(A, A′)| ea(A′) � a(A). (A.4)

The cluster expansion allows to express the logarithm of the partition function as a
sum (or an integral) over clusters.

Theorem A.1 (Cluster expansion). Assume that
∫

d|µ|(A)ea(A) < ∞, and that (A.3)
and (A.4) hold true. Then we have

Z = exp
{∑

n�1

∫
dµ(A1) . . .

∫
dµ(An) ϕ(A1, . . . , An)

}
.

Combined sum and integrals converge absolutely. Furthermore, we have for all A1 ∈ A,

1 +
∑

n�2

n
∫

d|µ|(A2) . . .

∫
d|µ|(An) |ϕ(A1, . . . , An)| � ea(A1). (A.5)

We refer to [20] for the proof of this theorem, and for further statements about cor-
relation functions.
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