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Motivation: Modeling Earth climate
[Ozawa et al, Rev. Geoph.41 (2003) 1018]



Linear electrical networks 
explaining MinEP/MaxEP principles

U22

Kirchhoff’s loop law:

Entropy production rate:

MinEPprinciple:

Stationary values of voltages
minimize the entropy 
production rate

Not valid under inhomogeneous 
temperature!

σ(U ) = βQ(U ) = β
∑

j,k

U 2
jk

Rjk

∑

k

Ujk =
∑

k

Ejk



Linear electrical networks 
explaining MinEP/MaxEPprinciples

U22

Kirchhoff’s current law:

Entropy production rate:

Work done by sources:

(Constrained)MaxEPprinciple:

Stationary values of currents 
maximize the entropy 
production under constraint

∑

j

Jjk = 0

σ(J) = βQ(J) = β
∑

j,k

RjkJ
2
jk

W (J) =
∑

jk

EjkJjk

Q(J) = W (J)



Linear electrical networks 
summary of MinEP/MaxEP principles

Current law
+

Loop law

MaxEP principle
+

Current law

Loop law
+

MinEP principle
Generalized

variational principle

I

U

U, I



From principles to fluctuation laws 
Questions and ideas

How to go beyond approximateand ad hoc
thermodynamic principles?

Inspiration from thermostatics:

Is there a nonequilibriumanalogy of 
thermodynamical fluctuation theory?

Equilibrium variational principles are intimately related 
to the structure of equilibrium fluctuations



From principles to fluctuation laws 
Equilibrium fluctuations

H(x) = Ne

M(x) = Nmeq(e)

H(x) = Ne

Typical value

P (M(x) = Nm) = eN [s(e,m)−seq(e)]

Probability of fluctuation

Hh(x) = H(x)− hM(x) = N [e− hm]

The fluctuation made typical!

s(e,m) = sheq(e − hm)
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d 
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From principles to fluctuation laws 
Equilibrium fluctuations

Fluctuation
functional

Variational
functional

Thermodynamic
potential

Entropy (Generalized)
free energy



From principles to fluctuation laws 
Static versus dynamical fluctuations

Empirical time average:

Ergodic property:

Dynamicalfluctuations:

Interpolating between staticand 
dynamicalfluctuations:

H(x) = Ne

P (m̄T = m) = e−T I(m) Static: τ →∞

I(∞)(m) = s(e)− s(e,m)

Dynamic: τ → 0

m̄T = 1
T

∫ T
0

m(xt) dt

m̄T → meq(e), T →∞

P
(
1
n

∑n
k=1m(xτk) = m

)
= e−n I

(τ)(m)



Effective model of macrofluctuations
Onsager-Machlup theory

Dynamics:

Equilibrium: 

Pathdistribution: 
S(m)− S(0)

P (ω) = exp
[
−N4

∫ T
0
R
2

(
dmt

dt + s
Rmt

)2]

P (m∞ = m) ∝ e−
1
2Nsm

2

Rdmt = −smt dt +
√

2R
N dBt



Effective model of macrofluctuations
Onsager-Machlup theory

Dynamics:

Pathdistribution: 

Dynamicalfluctuations:

(Typical immediate) entropy productionrate:

P (ω) = exp
[
−N4

∫ T
0
R
2

(
dmt

dt + s
Rmt

)2]

σ(m) = dS(mt)
dt = Ns2

2R m2

P (m̄T = m) = P (mt = m; 0 ≤ t ≤ T ) = exp
[
−T

Ns2

8R
m2
]

Rdmt = −smt dt +
√

2R
N dBt



Effective model of macrofluctuations
Onsager-Machlup theory

Dynamics:

Pathdistribution: 

Dynamicalfluctuations:

(Typical immediate) entropy productionrate:
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∫ T
0
R
2
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dmt

dt + s
Rmt
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2R m2

I(m) = 1
4σ(m)
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Ns2

8R
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Rdmt = −smt dt +
√

2R
N dBt



Towards general theory

Equilibrium Nonequilibrium

Closed
Hamiltonian dynamics

Open
Stochastic dynamics

MicroscopicMacroscopic



Linear electrical networks revisited
Dynamical fluctuations

Fluctuating dynamics:

Johnson-Nyquistnoise:

Empirical time average:

Dynamical fluctuation law:

R1 R2

E

C

E
f
1 E

f
2

white noise

U

ŪT = 1
T

∫ T
0

Ut dt

− 1
T logP (ŪT = U) = 1

4
β1β2(R1+R2)
β1R1+β2R2

[
U2

R1
+ (E−U)2

R2
− E2

R1+R2

]

E
f
t =

√
2R
β ξt

E = U + R2J + E
f
2

J = CU̇ +
U − E

f
1

R1



Linear electrical networks revisited
Dynamical fluctuations

Fluctuating dynamics:

Johnson-Nyquistnoise:

Empirical time average:

Dynamical fluctuation law:

R1 R2

E

C

E
f
1 E

f
2

white noise

U

total dissipated
heatŪT = 1

T
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Ut dt

− 1
T logP (ŪT = U) = 1
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Stochastic models of nonequilibrium
breaking detailed balance

Local detailed balance:

Globaldetailed balance generally 
broken:

Markov dynamics:

log k(x,y)
k(y,x)

= ∆s(x, y) = −∆s(y, x)
x

y

k(x, y)

k(y, x)

dρt(x)

dt
=
∑

y

[
ρt(y)k(y, x)− ρt(x)k(x, y)

]

∆s(x, y) = s(y)− s(x) + ǫF (x, y)



Stochastic models of nonequilibrium
breaking detailed balance

Local detailed balance:

Globaldetailed balance generally 
broken:

Markov dynamics:

log k(x,y)
k(y,x)

= ∆s(x, y) = −∆s(y, x)

entropy change
in the environment

x
y

k(x, y)

k(y, x)

dρt(x)

dt
=
∑

y

[
ρt(y)k(y, x)− ρt(x)k(x, y)

]

∆s(x, y) = s(y)− s(x) + ǫF (x, y)



Stochastic models of nonequilibrium
breaking detailed balance

Local detailed balance:

Globaldetailed balance generally 
broken:

Markov dynamics:

log k(x,y)
k(y,x)

= ∆s(x, y) = −∆s(y, x)

entropy change
in the environment

breaking term

x
y

k(x, y)

k(y, x)

dρt(x)

dt
=
∑

y

[
ρt(y)k(y, x)− ρt(x)k(x, y)

]

∆s(x, y) = s(y)− s(x) + ǫF (x, y)



Stochastic models of nonequilibrium
entropy production

Entropyof the system:

Meancurrents:

Mean entropy production rate:

x
y

k(x, y)

k(y, x)
Jρ(x, y) = ρ(x)k(x, y)− ρ(y)k(y, x)

︸ ︷︷ ︸
zero at detailed balance

S(ρ) = −
∑

x

ρ(x) log ρ(x)

σ(ρ) =
dS(ρt)

dt
+

1

2

∑

(x,y)

Jρ(x, y)∆s(x, y)

=
∑

x,y

ρ(x)k(x, y) log
ρ(x)k(x, y)

ρ(y)k(y, x)



Stochastic models of nonequilibrium
entropy production

Entropyof the system:

Entropy fluxes:

Mean entropy production rate:

S(ρ) = −
∑
x ρ(x) log ρ(x)

Warning:
Only for time-reversal
symmetric observables!

x
y

k(x, y)

k(y, x)
Jρ(x, y) = ρ(x)k(x, y)− ρ(y)k(y, x)

︸ ︷︷ ︸
zero at detailed balance

σ(ρ) =
dS(ρt)

dt
+

1

2

∑

(x,y)

Jρ(x, y)∆s(x, y)

=
∑

x,y

ρ(x)k(x, y) log
ρ(x)k(x, y)

ρ(y)k(y, x)
≥ 0



Stochastic models of nonequilibrium
MinEP principle

(“Microscopic”) MinEPprinciple:

Can we again recognize entropy production as 
a fluctuation functional?

x
y

k(x, y)

k(y, x)

In the first order approximation around 
detailed balance

σ(ρ) = min ⇒ ρ = ρs + O(ǫ2)



Stochastic models of nonequilibrium
dynamical fluctuations

Empirical occupation times:

Ergodic theorem:

Fluctuation lawfor occupation times?

Note: 

p̄T (x)→ ρs(x), T →∞

p̄T (x) = 1
T

∫ T
0

χ(ωt = x) dt
x

y

k(x, y)

k(y, x)

I(ρs) = 0

P (p̄T = p) = e−T I(p)



Stochastic models of nonequilibrium
dynamical fluctuations

Idea: Make the empirical distribution typical by 
modifying dynamics:

The “field” v is such that distribution p is stationary
distribution for the modified dynamics:

Comparing both processes yields the fluctuation law:

k(x, y) −→ kv(x, y) = k(x, y) e[v(y)−v(x)]/2

∑

y

[
p(y)kv(y, x)− p(x)kv(x, y)

]
= 0

I(p) =
∑

x,y

p(x)
[
k(x, y)− kv(x, y)

]



Recall 
Equilibrium fluctuations

H(x) = Ne

M(x) = Nmeq(e)

H(x) = Ne

Typical value

P (M(x) = Nm) = eN [s(e,m)−seq(e)]

Probability of fluctuation

Hh(x) = H(x)− hM(x) = N [e− hm]

The fluctuation made typical!
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Stochastic models of nonequilibrium
dynamical fluctuations

Idea: Make the empirical distribution typical by 
modifying dynamics:

The “field” v is such that distribution p is stationary
distribution for the modified dynamics:

Comparing both processes yields the fluctuation law:
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∑
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Stochastic models of nonequilibrium
dynamical fluctuations

Idea: Make the empirical distribution typical by 
modifying dynamics:

The “field” v is such that distribution p is stationary
distribution for the modified dynamics:

Comparing both processes yields the fluctuation law:

k(x, y) −→ kv(x, y) = k(x, y) e[v(y)−v(x)]/2

∑

y

[
p(y)kv(y, x)− p(x)kv(x, y)

]
= 0

I(p) =
∑

x,y

p(x)
[
k(x, y)− kv(x, y)

]

Traffic = mean dynamical activity:

I(p) = excess in traffic

T =
1

2

∑

x,y

p(x)k(x, y) + p(y)k(y, x)



Stochastic models of nonequilibrium
Recall: entropy production functional

Entropyof the system:

Meancurrents:

Mean entropy production rate:

x
y

k(x, y)

k(y, x)
Jρ(x, y) = ρ(x)k(x, y)− ρ(y)k(y, x)

︸ ︷︷ ︸
zero at detailed balance

S(ρ) = −
∑

x

ρ(x) log ρ(x)

σ(ρ) =
dS(ρt)

dt
+

1

2

∑

(x,y)

Jρ(x, y)∆s(x, y)

=
∑

x,y

ρ(x)k(x, y) log
ρ(x)k(x, y)

ρ(y)k(y, x)



Stochastic models of nonequilibrium
dynamical fluctuations close to equilibrium

General observation:

The variational functional is recognized as an 
approximatefluctuation functional
A consequence: A natural way how to go beyond
MinEP principleis to systematically analyze 
appropriate fluctuation laws

In the first order approximation around 
detailed balance

I(p) = 1
4

[
σ(p) − σ(ρs)

]
+ o(ǫ2)



Stochastic models of nonequilibrium
dynamical fluctuations close to equilibrium

General observation:

The variational functional is recognized as an 
approximatefluctuation functional

A consequence: A natural way how to go beyond
MinEP principleis to study various fluctuation laws

I(ρ) = 1
4

[
σ(ρ)− σ(ρs)

]
+ o(ǫ2)

In the first order approximation around 
detailed balance

Empirical currents:

+ - +x

y

J̄T (x, y) =
1

T

[
#{jumps x→ y in [0, T ]}

−#{jumps y → x} in [0, T ]
]



Stochastic models of nonequilibrium
dynamical fluctuations close to equilibrium

General observation:

The variational functional is recognized as an 
approximatefluctuation functional

A consequence: A natural way how to go beyond
MinEP principleis to study various fluctuation laws

I(ρ) = 1
4

[
σ(ρ)− σ(ρs)

]
+ o(ǫ2)

In the first order approximation around 
detailed balance

Empirical currents:

J̄T (x, y) =
1

T

[
#{jumps x→ y in [0, T ]}

−#{jumps y → x} in [0, T ]
]

+ - +x

y

Typically,
J̄T (x, y)→ ρs(x)k(x, y)− ρs(y)k(y, x)

Fluctuation law:

with the fluctuation functional

P (J̄T = J) = e−T G(J)

on stationary currents satisfying 

Js(x, y)

G(J) =
1

4

[
Ṡ(Js)− Ṡ(J)

]
+ o(ǫ2)

Ṡ(J) = D(J)



Stochastic models of nonequilibrium
dynamical fluctuations close to equilibrium

General observation:

The variational functional is recognized as an 
approximatefluctuation functional

A consequence: A natural way how to go beyond
MinEP principleis to study various fluctuation laws

I(ρ) = 1
4

[
σ(ρ)− σ(ρs)

]
+ o(ǫ2)

In the first order approximation around 
detailed balance

Empirical currents:

J̄T (x, y) =
1

T

[
#{jumps x→ y in [0, T ]}

−#{jumps y → x} in [0, T ]
]

+ - +x

y

Typically,
J̄T (x, y)→ ρs(x)k(x, y)− ρs(y)k(y, x)

Fluctuation law:

with the fluctuation functional

P (J̄T = J) = e−T G(J)

on stationary currents satisfying 

G(J) =
1

4

[
Ṡ(Js)− Ṡ(J)

]
+ o(ǫ2)

1
2

∑
x,yJ(x,y)∆s(x,y)

Entropy flux

Onsager dissipation
function

Ṡ(J) = D(J)



Stochastic models of nonequilibrium
towards general fluctuation theory

It is useful to study the occupation time 
statistics and currentstatistics jointly

Joint occupation-current statistics has a 
canonical structure

Driving-parameterized dynamics

kF (x, y) = k0(x, y) e
F (x,y)/2

Reference equilibrium

Current potential function

anti-
symmetric Traffic

H(p, F ) = 2[TF (p)− T0(p)]



It is useful to study the occupation time 
statistics and currentstatistics jointly

Joint occupation-current statistics has a 
canonical structure

Driving-parameterized dynamics

kF (x, y) = k0(x, y) e
F (x,y)/2

Reference equilibrium

Current potential function

anti-
symmetric Traffic

H(p, F ) = 2[TF (p)− T0(p)]

Canonicalequations

Joint occupation-currentfluctuation functional

IF (p, J) = 1
2

[
G(p, J) + H(p, F ) − Ṡ(F, J)

]

δH
δF (x,y)

∣∣∣
p,F

= JF (x, y)
Legendre
←→ δG

δJ(x,y)

∣∣∣
p,JF

= F (x, y)



Stochastic models of nonequilibrium
consequences of canonical formalism

Functional G describes (reference) 
equilibriumdynamical fluctuations

Fluctuation symmetryimmediately follows:

Symmetric(p) andantisymmetric(J) 
fluctuations are coupledaway from 
equilibrium, but:

IF (p,−J)− IF (p, J) = Ṡ(F, J)

Decoupling between p and J • for small fluctuations
• close to equilibrium



General conclusions
what we know

BothMinEPandMaxEPprinciples naturally follow from the 
fluctuation laws for empirical occupation timesand empirical 
currents, respectively
The validity of both principles is restricted to the close-to-
equilibriumregime and it is essentially a consequence of 
o decouplingbetween time-symmetric and time-

antisymmetric fluctuations
o intimate relation between traffic and entropy production

for Markovian dynamics close to detailed balance
Time-symmetricfluctuations are in general governed by the 
traffic functional (nonperturbative result!)
Jointoccupation-current fluctuations have a general canonical 
structure, generalizing the original Onsager-Machlup theory
Our approach can be extended tosemi-Markovsystems with 
some similar conclusions, cf. [6]



General conclusions
what we would like to know 

What is the operational meaningof new quantities (traffic,…) 
emerging in the dynamical fluctuation theory?
Are there useful computational schemesfor the fluctuation 
functionals and can one systematically improveon the EP 
principles beyond equilibrium?
What is the relation between staticand dynamical
fluctuations?
Could the dynamical fluctuation theory be a useful approach 
towards building nonequilibrium thermodynamics beyond 
close-to-equilibrium?

…and still many other things would be nice to know…
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