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Dynamical Sine-Gordon Equation

Space dimension d = 2. Equation depends on parameter 5 > 0.
1
Oru = §Au + ¢sin(Bu) + &

£ is space-time white noise.



Some parabolic stochastic PDEs

» Stochastic heat equation (£ space-time white noise) (Walsh
1980s)
8tU =Au+ §

» KPZ (Bertini-Giacomin 1997, Hairer 2011, Hairer-Quastel)
Oth = Ah+ (Vh)? +¢

» Dynamical ®* (Da Prato-Debussche 2003, Hairer 2013,
Mourrat-Weber 2014, Hairer-Xu)

Orp = D — ¢° + ¢

» Parabolic Anderson model (£ space white noise)
(Gubinelli-Imkeller-Perkovski 2012, Hairer 2013, Hairer-Labbe)

Oru = Au + f(u)é



Difficulties of solving these equations
» Stochastic heat equation in d space dimension
Oru=Au+¢

Heuristically,  E[¢(x, t)&(x,T)] = 69 (x — )d(t — )

d d
é. c C,1,§,6 Schauder uc leff&

> KPZ (d =1)
Orh = Ah + (0.h)? + ¢

» Dynamical ¢* (d = 2,3)
Brp = D¢ — ¢° + ¢
» Parabolic Anderson model (d = 2)

du=Au+f(u)C  (CeC579)



Dynamical Sine-Gordon Equation

Space dimension d = 2. Equation depends on parameter 5 > 0.
1 .
Oru = EAU + ¢sin(Bu) + ¢
For the linear equation
1

bec(C*



Dynamical Sine-Gordon: motivations
Space dimension d = 2. Equation depends on parameter 5 > 0.
1 .
Oru = EAU + (sin(Bu) + ¢

Formal invariant measure
exp (—;/|8u(x)|2dx—|—C/cos(ﬁu(x))dx) Du

» Dynamical ®* equation
0:p = D — NP> +¢
has formal invariant measure

e 3 [106(x)Pdx—3 [ 6(x)*dx Dy



Physical motivation

» The Sine-Gordon field theory

P (u) o e~ 2 J 10u()Pdx+( [ cos(Bu())dx
» 2D rotor model

P({Si}ieze) oc e X 55 (55 € 8

» 2D Coulomb system: each charge (x,0) € R? x {#1},

P ({(x1,01), e, (Xn, 0n)}) %e—ﬁz >2ijoioiV(xi—x;)

1
V(X—y)N—gmlx—y!

Kosterlitz-Thouless transition at 32 = 8.
» small 3: Gaussian behavior at small scale

» large B: Gaussian behavior at large scale



Dynamical Sine-Gordon Equation

Stochastic PDE for u(t, x) (x € T?):

1
Oru = EAU + (sin(Bu) + &
where ¢ is the space-time white noise.

Is the initial value problem well-posed?

Background:

» Formally, the Sine-Gordon measure is an invariant measure of
the above dynamics.

» Dynamic of solid-vapour interfaces at the roughening
transition (Chui-Weeks PRL'78, Neudecker Zeit.Phys'83)

» Crystal surface fluctuations in equilibrium (Kahng-Park
Phys.Rev.B'93-'94)



Dynamical Sine-Gordon Equation

Theorem
If 3% < 167/3, then “a renormalized version” of the equation

Oru = %Au + (sin(Bu) + ¢

is locally well-posed for any initial data u(®) e C"(T?) with n > —%.

» Well-posedness is expected for all 3% < 8, but we have not
proved it.

» The same result holds with some generalizations:

M
1 .
Ol = EAu + ;? 1 Cksin(kBu+0k) + €



Methods of the proof

» Da Prato - Debussche method applies after some extra work
for 82 < 4.

» Also applies to: Dynamical % in 2D (Da Prato-Debussche),
Dynamical ®3 in 3D (E-Jentzen-S)

» Hairer's theory of regularity structures applies for
Ao < 52 < 16% (in principle should work for 3> < 87 but has not been
done)

» Also applies to: Dynamical ®* in 3D, KPZ in 1D,

Parabolic Anderson model in 2D, and
many other subcritical (super-renormalizable) equations (Hairer)



The main difficulty
Stochastic PDE for u(t,x) (x € T?):
1
Oru = §Au + ¢sin(Bu) + &
» The solution to the linear equation
1
8tu = §AU +§

is a.s. a distribution — sin(Su) is meaningless!

» Replace £ by smooth noise &,

8tue = %Aue + CSin(ﬁue) + 55

where £, — £ as € — 0. Then u, does not converge to any
nontrivial limit as € — 0.



Da Prato - Debussche method

Let & be smooth noise and £, — £. Write u. = &, + v, where
1
atue = iAUe + CSin(ﬂuﬁ) + fe
1
8t¢€ = §A¢e + ge
Then v, satisfies
1 ) .
Orve = EAV6 + C(sm([ﬂbg) cos(Bve) + cos(SP.) sm(ﬁv€)>

New random input:  exp(if®.) = cos(B8P.) + i sin(SPD.).

» Parabolic Anderson d;u = Au + "Gaussian noise"-f(u)



A general PDE argument

Let f be a smooth function, and ¥ € C7 with v > —1,
1
Orv = EAv—l—\Uf(v)

Let K = (0; — )~ be the heat kernel. Then:
M:vi= K x (VF(v))

defines a map from C! to C! itself:
» Young's Thm: g € C*, he CP a+ > 0= ghe Cmin(®f)

Vif(v)e C” (v>-1)
» Schauder's estimate: “heat kernel gives two more regularities”

MveCt?2cct



Da Prato - Debussche method

» Back to our equation
1 . .
O¢Ve = §AvE + C(sm(ﬂd)f) cos(Bve) + cos(SP,) S|n(,6’v€))

Q: Does exp(if®.) converge to a limit in C7 with v > —17

> gog\o: rescaled test function centered at zg (apﬁo(z) = /\‘ﬂp(%))

Kolmogorov: For random process f., suppose Vzy € R>*!
E[(f, 920" SXNP ATPE[(f —f, 930" = 0

for Vp > 1, uniformly in X\, 0. Then, f. — f € C7.



Da Prato - Debussche method: bound on second moment

Back to the question e’*®< —7? in C7 with v > —1

» Want: [ [ ©3(2)eP®e (Z)dz <A C@_@
» By Fourier transform
E [eiﬁ¢e(z)e—i5¢e(z’)} Fle:irj;alze
—exp (- ZE[(0.(2) - 0.)7))
5 € € @_O
> E[0(2)Pc(2)] ~ —5; log(lz — 2| +¢)
> exp ( - %ZE [Dc(2)?] ) ~ e?/4m) 5 0 (e —0)

To obtain a nontrival limit, consider the renormalized object

W, = ¢ B/(4m) B



Da Prato - Debussche method: bound on second moment

» Second moment bound

‘ /cpo (2) dz / |z — 2|~ B2/ (2m) 03 (2)p3(2) dzdz'
< AP/ ()
(integrable when 32 < 8r)
> Indicates W (z) — W(z) € C#*/(4m)
Therefore, when 32 < 47, we have W(z) € C7 with v > —1.

» Replace /%< by W, <= renormalize the original equation

Ot = %Aue + e PO sin(Bu) + &



Da Prato - Debussche method: bound on higher moments

However, second moment bound is not sufficient!
Higher order correlations look like:

E[WE(ZT) ce \Ue(Z;) \Tje(zl_) T \De(zr;)

B Hi;éj Jc(z" — Zj+) 1_[i#jjf(zii — ZJ'i)
[1;;J(z" — z)

Tz~ 2) ~ |z = 2/|7/C0)




Da Prato - Debussche method: bound on higher moments

We can show that

Hi;&jje(zfr _ZjJr) Hi;éj Tz _Zf) < 1
Hi,j ~7e(2,'+ - Zj_) ~ H(iJ)es je(z,+ - Zj_)

where S is a pairing of positive-negative charges.




Da Prato - Debussche method: bound on higher moments

» A cancellation occurs when two opposite charges are close,
while a third charge is far away.

» Motivated by this - Multiscale analysis

Conclusion: For all 82 < 8x, W, — W € C—A/(4m),
Therefore if 32 < 47, W € CY with v > —1, and

Dev — %Av +¢(Im(w) cos(Bv) + Re(w) sin(5v) )

is well-posed.



Theory of regularity structure and 32 > 47
If W e C7 with v < -1,

1
Orv = EAV + W f(v)
“Young's theorem - Schauder’s estimate” argument breaks down.

A Stochastic ODE example:

dXt - f(Xt) dBt

» If dB € C'(Ry) with v > —%, Young's theorem applies for
X e C%; Fix Point Argument in C%
» For B Brownian motion, dB € C7(Ry) with v < —%; the

argument breaks down - one needs extra information to define
the product f(X;)dB; .

» Extra information given by rough path theory.



Theory of regularity structure and 32 > 47

For smooth function f

dXt - f(Xt) dBt

» X locally “looks like" Brownian motion (So does f(X).)
Xt — Xty = 8t - (Bt — Byy) + sth. smoother

» Only need to define one product B dB.



Theory of regularity structure and 32 > 47

dXt = f(Xt) dBt 8tV = %AV + f(V) L
dB e C /%= Ve (C
The solutions, at small scale, behave like

X~B= / dBs analogous v~ KxW

where K = (0, — 1A)~ 1,
» Only need to deflne one product W (K * V).

» A whole theory (Theory of regularity structures recently
developed by Martin Hairer) behind this “analogy’.



Regularity structure and 32 > 47: moments of W (K * V)
» First moment:

E[V() [ K(z—w)U(w)dw] = /R K(z-w)T(z-w) dw

R2+1
For 32 > 47 non-integrable singularity at z &~ w, since
K(z—w)~|z—w|?
J(z—w)t~|z— W|_52/(2”)
; KJ~ -

» Suggest renormalization: define the product to be

W(K 5 w) 2 lim [\Ue(K £ ) / Kj;l}



Regularity structure and 32 > 47: moments of W (K * V)

Second moment:

1
-z )K —
/R /R 2KE —2) o S 7T )
y (J(zf —2)J(z ~—2)
Izt —2)T(z — 2)

1) dzf dzg

» Singularities: z;" ~ z; or z) ~ z,
» But in either of the two cases, the second line vanishes.



Theory of regularity structure and 32 > 4m: moments of
V(K W)

%

» Renormalization of W(K % W) = change of the equation
Opve = %Ave - C(/m(\lfe) cos(Bve)—C C. cos(Bve) cos’(ﬁve))

+ C(Re(\lfe) sin(Bve)—CC. sin(fv.) sin’(ﬁv€)>



Larger values of 3

» At 2 =4m, Ve C ! - need V- KV
» At 2 =167/3, W € C™%/3 - need V- K(V - KV)
» At B2 =6m, W e C 32 need V- K(V-K(V-KV))

Infinite thresholds:

16 8(n—1
0<47T<T7T<67T<...< (nn )7r< .= 8m
. o o000 o 3
Am 16%67732% ------ 8m

Da Prato-Debussche No nontrivial

solution expected



