Stochastic modelling and immunology: How many populations? how many cells? how many encounters?

Grant Lythe and Carmen Molina-París (Leeds) Robin Callard and Rollo Hoare (UCL)

Thanks to: Hugo van den Berg, Nigel Burroughs, David Rand, Jochen Voss

The T cell repertoire and self pMHC universe

The human body maintains a diverse repertoire of T cells, about 10^{11} total cells classified by their T cell receptor into clonotypes. New T cells from the thymus or division of cells in the periphery compensate for cell death.

Cross-reactivity and clonal identity

self pMHCs T cell clonotypes

Each clonotype is assigned a pattern of interaction with the set of M pMHCs. In the simplest algorithm, each of the pMHC is recognised with probability p, so that the mean number of pMHC recognised (cross-reactivity) is $p M$. The number of possible combinations is sufficiently large that each recognition profile is a unique signature.

Singh, Bando and Schwartz, Immunity 37 (2012)
Sewell, Nature Reviews Immunology 12 (2012)
Nikolich-Žugich et al Nature Reviews Immunology 4 (2004)

Stochastic system dynamics

Death

Every T cell has a constant probability per unit time μ of dying, independent of all others.

Division

Each pMHC set stimulates at rate γ. The stimulus is equally likely to cause one round of cell division in any of the T cells capable of recognising it.
The stimulus is divided into M subsets.
The number of T cells of type i at time t is $n_{i}(t) \geq 0$.
A clonotype has survived to time t if $n_{i}(t)>0$.
The number of surviving clonotypes at time t is $N(t)$.

Stimuli and cell division

Birth rate for T cells of type i

$$
\Lambda_{i}=\gamma \sum_{q \in Q_{i}} \frac{n_{i}}{\left|c_{q}\right|} \leq \gamma \phi_{i} \text { where } \phi_{i}=\text { number of } \mathrm{pMHCs} \text { in } Q_{i} .
$$

Multidimensional Markov dynamics: example

$$
\left(\begin{array}{llllllll}
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Suppose that $n(t)=(15,7,9,0,11,1)$. Then

$$
\operatorname{Pr}[\text { next event is a death }]=\frac{\Omega(t)}{\Omega(t)+\Lambda(t)}
$$

$$
\text { where } \Omega(t)=\mu(15+7+9+0+11+1)
$$

and
where

$$
\Lambda(t)=\Lambda_{1}(t)+\Lambda_{2}(t)+\Lambda_{3}(t)+\cdots+\Lambda_{6}(t)
$$

Model of large-scale clonal competition

Total number of cells

$$
\begin{aligned}
& \gamma=4.0 \mu=1.0 \\
& M=1000 \quad p=0.1 \\
& 2013-08-29
\end{aligned}
$$

Timescales

- The overall timescale for T-cell lifetimes is μ^{-1}. Mouse: $\mu=1$ month $^{-1} \quad$ Human: $\mu=1$ year $^{-1}$
- Transient timescale: the mean total number of T cells finds the level $\frac{M \gamma}{\mu}$.
- Extinction timescale: the probability that a clone, initially with n_{0} cells, survives up to time t is

$$
\operatorname{Pr}(\text { survival })=1-\exp \left(-\frac{n_{0}}{\mu t}\right)
$$

That is, half of all clonotypes survive until $t_{1 / 2}=\frac{n_{0}}{\mu} \ln 2$.

Understanding clonotype competition

- For each clonotype i, we can define $\phi_{i}=$ number of q in Q_{i}.
- For each pMHC q we can define $\left|C_{q}\right|(t)=$ number of surviving clonotypes recognising q.

Numerical realization with $N=1000$, $M=2000, p=0.05$, $\mu=1.0, \gamma=10.0$ and $n_{i}(0)=10$.

- Green: initial distribution.
- Red: distribution at $T=100$.

Mason relation

$$
M \bar{C}=N \bar{\phi}
$$

Fig. 3. The derivation of the crossreactivity equation. Fifteen different MHC-associated peptides, ' α ', are shown interacting with five different T cells. Each T cell reacts with nine different peptides and each peptide reacts with three different T cells. Evidently, $3 \times 15=9 \times 5=45$, which is the number of peptide-T-cell interactions in the figure. Generalizing this result, $T(p) \times N=P(t) \times T$. Note that the value of $T(p)$ will vary for different peptides and similarly the value of $P(t)$ will not be the same for all T cells. However, the crossreactivity equation remains valid if the mean values of $T(p)$ and $P(t)$ are used.

[^0]
Thymic production: maintenance and reconstitution

At random times, with rate θ, new clonotypes are created with n_{θ} cells.

- The mean total number of cells is almost unaffected.
- Most thymic emigrant clonotypes do not survive for long, but those that do are important in maintaining diversity and coverage.

Berzins et al, Trends in Molecular Medicine 10 (2002)

Parameter value guesses for mice and humans

The steady mean total number of cells is $\mu^{-1}\left(\gamma M+n_{\theta} \theta\right)$.

$$
\begin{gathered}
\text { Mice } \\
\mu=1 \text { month }^{-1}
\end{gathered}
$$

Total (naive CD^{+}) T cells:
4×10^{7}
Thymic production:
$n_{\theta} \theta=4 \times 10^{7}$ month $^{-1}$
$p=10^{-6}, M=10^{9}$,
$\gamma=10^{-3}$ month $^{-1}$
$N \simeq 2 \times 10^{7} / n_{\theta}$
Bains, Antia, Callard and Yates, Blood 113 (2009)
Westera et al Blood (2013)
Vrisekoop et al PNAS 105 (2008)
Murray et al Immunology and Cell Biology (2003)
de Boer and Perelson, J Theoretical Biology (2013)

Humans

$$
\mu=1 \text { year }^{-1} .
$$

Total (naive CD4 ${ }^{+}$) T cells:
4×10^{11}.
Thymic production:
$n_{\theta} \theta=10^{10}$ year $^{-1}$
$p=10^{-6}, M=10^{10}$,
$\gamma=10$ year $^{-1}$
$N=$ no simple formula.

Markov chain model and extinction

$p_{n}(t)$ is the probability that, at time t, there are $n \mathrm{~T}$ cells of clonotype i. The probability that, at time $t+\Delta t$, there are $n-1 \mathrm{~T}$ cells of clonotype i is $n \mu \Delta t$, as $\Delta t \rightarrow 0 . \mu_{n}=n \mu$.

In the "mean-field" model, extinction occurs with probability 1.
Limiting conditional distribution:

$$
q_{n}=\lim _{t \rightarrow \infty} \frac{p_{n}(t)}{1-p_{0}(t)}
$$

Global competition model (one resource)

In any short time interval, a T cell either remains unchanged, dies, or divides into two cells of the same clonotype. The dynamics are thus governed by the birth (division) and death rates. For the latter, we adopt the simplest hypothesis: that each T cell, independently of all others, has a probability μ per unit time (rate) of death. Cell division results from a constant rate of stimulus γ that is equally likely to be received by each living cell.

- Each cell, independently, has a constant death rate, μ.
- The resource causes cell division at rate γ. All living cells are equally likely to receive stimulus and divide.

Stationary mean total number of cells

If the number of cells alive at time t is $n(t)>0$ then the birth rate is γ and the death rate is $\mu n(t)$. That is,

$$
\begin{aligned}
\lim _{\Delta t \rightarrow 0} \Delta t^{-1} \operatorname{Pr}[n(t+\Delta t)-n(t)=1] & =\gamma \quad \text { and, } \\
\lim _{\Delta t \rightarrow 0} \Delta t^{-1} \operatorname{Pr}[n(t+\Delta t)-n(t)=-1] & =n(t) \mu
\end{aligned}
$$

Consider the quantities $p_{k}(t)=\operatorname{Pr}[n(t)=k]$, for each integer k. They satisfy

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} p_{0}=\mu p_{1} \\
& \frac{\mathrm{~d}}{\mathrm{~d} t} p_{1}=-\mu p_{1}+2 \mu p_{2}-\gamma p_{1} \\
& \frac{\mathrm{~d}}{\mathrm{~d} t} p_{k}=\gamma\left(p_{k-1}-p_{k}\right)+\mu\left((k+1) p_{k+1}-k p_{k}\right) \quad k \geq 2
\end{aligned}
$$

Stationary mean total number of cells

Let the mean total number of cells be $x(t)=\mathbb{E}(n(t))$.
Then $x(t)=\sum_{k=1}^{\infty} k p_{k}(t)$ and

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} x(t)= & \mu\left(-p_{1}+2 p_{2}-\sum_{k=2}^{\infty} k^{2} p_{k}+\sum_{k=2}^{\infty} k(k+1) p_{k+1}\right) \\
& +\gamma\left(-p_{1}-\sum_{k=2}^{\infty} k p_{k}+\sum_{k=2}^{\infty} k p_{k-1}\right) \\
= & \mu\left(-p_{1}-\sum_{l=2}^{\infty} l p_{l}\right)+\gamma \sum_{k=0}^{\infty} p_{k} \\
= & -\mu x(t)+\gamma .
\end{aligned}
$$

That is

$$
\frac{\mathrm{d}}{\mathrm{~d} t} x=\gamma-\mu x .
$$

Clonotypes

The cell population is divided into clonotypes. Each cell has a clonotype label i and the number of cells with label i at time t is $n_{i}(t)$. Thus

$$
n(t)=\sum_{i} n_{i}(t)
$$

Now the birth and death rates for clonotype i are

$$
\lim _{\Delta t \rightarrow 0} \Delta t^{-1} \operatorname{Pr}\left[n_{i}(t+\Delta t)-n_{i}(t)=1\right]=\gamma \frac{n_{i}(t)}{n(t)}
$$

and

$$
\lim _{\Delta t \rightarrow 0} \Delta t^{-1} \operatorname{Pr}\left[n_{i}(t+\Delta t)-n_{i}(t)=-1\right]=n_{i}(t) \mu
$$

The competition for stimulus, between clonotypes and between cells of the same clonotype, is called global or public because of the factor $\frac{n_{i}(t)}{n(t)}$ in the birth rate for clonotype i.

Distribution of extinction times

Now, if we assume $n(t) \simeq<n>=\frac{\gamma}{\mu}$, then

$$
\lambda_{i}(t)=\simeq \mu n_{i},
$$

Let us approximate n_{i} by a diffusion process, \mathbf{X}_{t}.

$$
\mathrm{d} \mathbf{X}_{t}=\sqrt{2 \mu \mathbf{X}_{t}} \mathrm{~d} \mathbf{W}_{t} .
$$

If $F(t, b)$ is the probability of hitting 0 before time t, starting with $\mathbf{X}_{0}=b$, then

$$
\frac{\partial}{\partial t} F(t, b)=\frac{1}{2} \mu b \frac{\partial^{2}}{\partial b^{2}} F(t, b),
$$

with $F(t, 0)=1$. Thus $F(t, b)=1-\exp \left(-\frac{b}{\mu t}\right)$ and

$$
\operatorname{Pr}\left[\mathbf{X}_{t}=0 \mid \mathbf{X}_{0}=b\right]=\exp \left(-\frac{b}{\mu t}\right)
$$

Cells and interactions of the immune system

Figure 25-5 Molecular Biology of the Cell $5 / \mathrm{e}$ (\odot Garland Science 2008)

Cells and interactions of the immune system

Quantifying the probability of T cell activation

- Adaptive responses are initiated through encounters between rare naive Ag-specific T cells and Ag-bearing dendritic cells (DCs).
- The number of DCs in the draining Lymph node (LN) influences the chance that rare Ag -specific T cells are activated.
- Using two experimental approaches and one in silico model, we measured the probability of T cell-DC encounters.

Brief report

How many dendritic cells are required to initiate a T-cell response?
Susanna Celli, ${ }^{12}$ Mark Day, ${ }^{3}$ Andreas J. Müller, ${ }^{12}$ Carmen Molina-Paris, ${ }^{3}$ Grant Lythe, ${ }^{3}$ and Philippe Bousso ${ }^{12}$
${ }^{1}$ Insitut Pasteut, Dynamics of Immune Responses Unit, Pans, Fance, Inserm U668, Panis, France, and Deparment of Applied Mathematics, University of Leeds, Leeds, United Kingdom

T-cell activation in lymph nodes relies on encounters with antigen (Ag)-bearing dendritic cells (DCs) but the number of DCs required to initiate an immune response is unknown. Here we have used a combination of flow cytometry, 2-photon imaging, and computational modeling to quantify the probability of T cell-DC en-

Abstract

counters. We calculated that the chance for a T cell residing 24 hours in a murine popliteal lymph nodes to interact with a DC was $8 \%, 58 \%$, and 99% in the presence of 10,100 , and 1000 Ag -bearing DCs, respectively. Our results reveal the existence of a threshold in DC numbers below which T-cell responses fail to be elicited

Abstract

for probabilistic reasons. In mice and probably humans, we estimate that a minimum of 85 DCs are required to initiate a T-cell response when starting from precursor frequency of 10^{-6}. Our results have implications for the rational design of DC-based vaccines. (Blood. 2012; 120(00): 000-000)

T cell - dendritic cell interactions in a lymph node

- Flow cytometry after 30 minutes (phospho-c-jun staining).
- Two-photon imaging during and after injection of peptide.

Cell-cell encounters confined to a volume

Take a DC to be stationary and with effective radius b. Approximate a T cell by a diffusing point particle with diffusivity D.

Preston, Waters, Jensen, Heaton and Pritchard. Physical Review E (2006)
Cheviakov and Ward. Mathematical and Computer Modelling (2011)
Mark Day and Grant Lythe, Springer (2012)

Estimate for α

In general, the mean hitting time, T, as a function of the initial location, x_{0}, satisfies $D \nabla^{2} T\left(x_{0}\right)=-1$. If the DC is situated at the centre of the volume, the mean time is a function of $r_{0}=\left|x_{0}\right|$ only, $T\left(x_{0}\right)=F\left(r_{0}\right)$, with $F(b)=0$ and $\frac{\partial}{\partial r} F(R)=0$.
If the T cell starts a distance r from the centre of the volume, then

$$
F(r)=\frac{R^{3}}{3 D}\left(\frac{1}{b}-\frac{1}{r}\right)-\frac{1}{6 D}\left(r^{2}-b^{2}\right)
$$

The rate α is estimated the inverse of the mean hitting time, averaged over all available initial T -cell positions inside the volume, and expanding in powers of b / R :

$$
\frac{1}{\alpha}=\frac{1}{\frac{4}{3} \pi\left(R^{3}-b^{3}\right)} \int_{b}^{R} 4 \pi r^{2} F(r) \mathrm{d} r=\frac{R^{3}}{3 D b}-\frac{3}{5} \frac{R^{2}}{D}+\cdots
$$

Experiment, numerics, formula

$\operatorname{Prob}(T$ cell does not encounter any $D C)=\mathrm{e}^{-\alpha A t}$.
$\operatorname{Prob}(T$ cell encounters at least one $D C)=1-e^{-\alpha A t}$.
With N T cells and A DCs,

$$
\operatorname{Prob}(\text { No } \mathrm{T} \text { cell encounters any } \mathrm{DC})=\mathrm{e}^{-\alpha N A t} .
$$

Let the number of DCs that yields a 50 percent probability of at least one T cell-DC encounter in time t be denoted by A^{*}. Then

$$
A^{*}=\frac{\ln 2}{\alpha N t}
$$

Choose $t=24$ hours.
In both mice and humans, we estimate that a minimum of 85 DCs are required to initiate a T cell response when starting from a precursor frequency of 10^{-6}.
Thonry hol.

Motion on a network resembles Brownian motion?

T cells can move on the network

"Mathematical Models and Immune Cell Biology"

Springer volume, 19 Chapters.

Carmen Molina-Paris - Grant Lythe Editors
Mathematical Models and Immune Cell Biology

Mathematical immunology is in a period of rapid expansion and excitement. At recent meetings, a common language and research direction has emerged amongst a worldclass group of scientists and mathematicians. Mathematical Models and Immune Cell Biology aims to communicate these new ideas to a wider audience. The reader will be exposed to a variety of tools and methods that go hand-in-hand with the immunological processes being modeled. This volume contains chapters, written by immunologists and mathematicians, on thymocytes, on T cell interactions, activation, proliferation and homeostasis, as well as on dendritic cells, B cells and germinal centers. Chapters are devoted to measurement and imaging methods and to HIV and viral infections.

Carmen Molina-París
Grant Lythe Editors

ϱ

Mathematical

 Models and Immune Cell Biology

MATHEMATICAL MODELLING AFFINITY GROUP

19-20 MAY 2014

Monday 19 May	
10:45-11:10	REGISTRATION \& COFFEE
11:10-12:00	Robin Callard (UCL)
	T cell homeostasis and immune reconstitution in HIV infected children on anti-retroviral therapy
12:00-12:50	Martin Turner (Babraham Institute) Molecular regulation of lymphocyte celf cycle
12:50-14:00	LUNCH
14:00-14:50	Klaus Okkenhaug (Babraham Institute) Signalling by PIJKs in the immune system
14:50-15:15	Sitabhra Sinha (MISc, Chennaí, India) Action-at-a-distance in cell signalling networks
15:15-15:45	COFFEE \& BISCUITS
15:45-16:10	Benny Chain (UCL)
	Iracking global changes induced in the CD4 T cell receptor repertoire by immunisation with a complex antigen using short stretches of CDR3 protein sequences
16:10-16:35	Jennifer Benichou (Bar Ilan University, Israel) Restricted DH gene reading frame usage in the expressed human antigen repertaire is selected based on their amino acid content
16:35-17:00	Valentina Proserpio (EMBL, European Bioinformatics Institute) Transcriptomic dynamics in Thelper 2 cells revea! a three state differentiation model
17:00-17:25	Andreas Bruckbauer (Cancer Research UK) From single molecules to nanoclusters: the spatio-temporal dynamics of the B cell receptor in the steady state
18:30	Dinner at St John's Chop House

```
09:30-10:00
10:00-10:50
10:50-11:15
11:15-11:45
11:45-12:10

\section*{Next meeting: \\ Microsoft Research, Cambridge 4-5 June 2015. http://www1.maths.leeds.ac. uk/applied/BSI/}

\section*{Academic fellowships}

Are you one of the 250 Great Minds we are looking for?
The University of Leeds is seeking to recruit up to 250 exceptional early career academics to tenure track equivalent Academic Fellowships over the next three years. Whether you are looking to establish your academic career as a new fellow or already hold an existing funded fellowship and wish to bring it to the University of Leeds we want to hear from you. Find out more
http://250greatminds.leeds.ac.uk/

\section*{a word from ...}
- Quantitative T cell Immunology (ITN)
- Mathematics for Health and Disease (FP7 IRSES)
- International Network on Theoretical Immunology (FP7 IRSES)
- Immunology, Imaging and Modelling (BBSRC MATSYB)
http://www1.maths.leeds.ac.uk/Applied/QUANTI
http://www1.maths.leeds.ac.uk/Applied/INDOMATH
http://www1.maths.leeds.ac.uk/Applied/INTI
http://www1.maths.leeds.ac.uk/Applied/I2M```


[^0]:    D. Mason, Immunology Today 19 (1998)

    Zarnitsyna et al, Frontiers in Immunology (2013)

