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Discrete Markov Chains

Discrete homogeneous Markov chain in an N-dimensional state space,

p(t +1) = Wp(t) ⇔ pi(t +1) = ∑
j

Wijpj(t) .

Normalization of probabilities requires that W is a stochastic matrix,

Wij ≥ 0 for all i, j and ∑
i

Wij = 1 for all j .

Implies that generally
σ(W )⊆ {z; |z| ≤ 1} .

If W satisfies a detailed balance condition, then

σ(W )⊆ [−1,1] .
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Spectral Properties – Relaxation Time Spectra

Perron-Frobenius Theorems: exactly one eigenvalue λµ
1 = +1 for every

irreducible component µ of phase space.

Assuming absence of cycles, all other eigenvalues satisfy

|λµ
α|< 1 , α 6= 1 .

If system is overall irreducible: equilibrium is unique and convergence to
equilibrium is exponential in time, as long as N remains finite:

p(t) = W tp(0) = peq + ∑
α( 6=1)

λt
α vα

(

wα,p(0)
)

Identify relaxation times

τα =− 1

ln |λα|
⇐⇒ spectrum of W relates to spectrum of relaxation times.
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Markov matrices defined in terms of random graphs

Interested in behaviour of Markov chains for large N, and transition
matrices describing complex systems.

Define in terms of weighted random graphs.
Start from a rate matrix Γ = (Γij) = (cijKij)
on a random graph specified by

a connectivity matrix C = (cij) , and edge weights Kij > 0 .

Set Markov transition matrix elements to

Wij =











Γij

Γj
, i 6= j ,

1 , i = j , and Γj = 0 ,
0 , otherwise ,

where Γj = ∑i Γij .
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Master-Equation Operator

Master-equation operator related to Markov transition matrix W ,

Mij =











Γij

Γj
, i 6= j ,

−1 , i = j ,and Γj 6= 0 ,
0 , otherwise ,

in terms of which

pi(t +1)−pi(t) = ∑
j

[Wijpj(t)−Wjipi(t)] = ∑
j

Mijpj(t) .

Special case: unbiased random walk, with Kij = 1, so

Wij =
cij

kj
, kj = ∑

i

cij

for which

Mij =







cij

kj
, i 6= j ,

−1 , i = j ,and kj 6= 0
0 , otherwise .
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Symmetrization

Markov transition matrix can be symmetrized by a similarity
transformation, if it satisfies a detailed balance condition w.r.t. an
equilibrium distribution pi = peq

i

Wijpj = Wjipi

Symmetrized by W = P−1/2WP1/2 with P = diag(pi)

Wij =
1√
pi

Wij
√

pj =Wji

Symmetric structure is inherited by transformed master-equation operator
M = P−1/2MP1/2,

Mij =







Wij , i 6= j ,
−1 , i = j , and kj 6= 0
0 , otherwise .

Computation of spectra below so far restricted to this case.
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Applications I – Unbiased Random Walk

Unbiased random walks on complex networks: Kij = 1; transitions to
neighbouring vertices with equal probability:

Wij =
cij

kj
, i 6= j ,

and Wii = 1 on isolated sites (ki = 0).

Symmetrized version is

Wij =
cij

√

kikj
, i 6= j ,

and Wii = 1 on isolated sites.

Symmetrized master-equation operator known as normalized graph
Laplacian

Lij =











cij√
ki kj

, i 6= j

−1 , i = j ,and ki 6= 0
0 , otherwise .
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Applicatons II – Non-uniform Edge Weights

Internet traffic (hopping of data packages between routers)

Relaxation in complex energy landscapes; Kramers transition rates for
transitions between long-lived states; e.g.:

Γij = cij exp
{

−β(Vij −Ej)
}

with energies Ei and barriers Vij from some random distribution.
⇔ generalized trap models.

Markov transition matrices of generalized trap models satisfy a detailed
balance condition with

pi =
Γi

Z
e−βEi

⇒ can be symmetrized.
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Spectral Density and Resolvent

Spectral density from resolvent (A =W ,L ,M )

ρA(λ) =
1

πN
Im Tr

[

λε1I−A
]−1

, λε = λ− iε

Express as (S F Edwards & R C Jones, JPA, 1976)

ρA(λ) =
1

πN
Im

∂
∂λ

Tr ln
[

λε1I−A
]

= − 2

πN
Im

∂
∂λ

lnZN ,

where ZN is a Gaussian integral:

ZN =
Z

∏
k

duk
√

2π/i
exp

{

− i
2 ∑

k ,ℓ

uk(λεδkℓ−Akℓ)uℓ

}

.

Spectral density expressed in terms of single site-variances

ρA(λ) =
1

πN
Re ∑

i

〈u2
i 〉 ,
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Large Single Instances

I. Investigate single large instances
Use cavity method to evaluates single-site marginals

P(ui) ∝ exp
{

− i
2

λε u2
i

}

Z

∏
j∈∂i

duj exp
{

i ∑
j∈∂i

Aijuiuj

}

P
(i)
j (uj) ,

On a (locally) tree-like graph get recursion for the cavity distributions,

P
(i)
j (uj) ∝ exp

{

− i
2

λε u2
j

}

∏
ℓ∈∂j\i

Z

duℓ exp
{

iAjℓujuℓ

}

P
(j)
ℓ (uℓ) .

Cavity recrsions self-consistently solved by (complex) Gaussians.

P
(i)
j (uj) =

√

ω(i)
j /2π exp

{

− 1

2
ω(i)

j u2
j

}

,

generate recursion for inverse cavity variances

ω(i)
j = iλε + ∑

ℓ∈∂j\i

A2
jℓ

ω(j)
ℓ

.

Solve iteratively on single instances for N = O(105)
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Thermodynamic Limit

Recursions for inverse cavity variances can be interpreted as stochastic
recursions, generating a self-consistency equation for their pdf π(ω).

Structure for (up to symmetry) i.i.d matrix elements Aij = cijKij

RK J Phys A (2008)

π(ω) = ∑
k≥1

p(k)
k

c

Z k−1

∏
ν=1

dπ(ων) 〈δ(ω−Ωk−1)〉{Kν}

with

Ωk−1 = Ωk−1({ων,Kν}) = iλε +
k−1

∑
ν=1

K 2
ν

ων
.

Solve using population dynamics algorithm. Mézard, Parisi (2001)

& get spectral density:

ρ(λ) =
1

π
Re ∑

k

p(k)
Z k

∏
ν=1

dπ(ωℓ)

〈

1

Ωk ({ων,Kν})

〉

{Kν}

Can identify continuous and pure point contributions to DOS.
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Self-Consistency Equations & Spectral Density
Unbiased Random Walk

Self-consistency equations for pdf of inverse cavity variances;
– first: transformation ui ← ui/

√
ki on non-isolated sites

π(ω) = ∑
k≥1

p(k)
k

c

Z k−1

∏
ℓ=1

dπ(ωℓ) δ(ω−Ωk−1)

with

Ωk−1 = Ωk−1({ωℓ}) = iλεk +
k−1

∑
ℓ=1

1

ωℓ
.

Solve using stochastic (population dynamics) algorithm.

In terms of these

ρ(λ) = p(0)δ(λ−1)+
1

π
Re ∑

k≥1

p(k)
Z k

∏
ℓ=1

dπ(ωℓ)
k

Ωk({ωℓ})
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Self-Consistency Equations & Spectral Density
General Markov Matrices

Same structure superficially;
– first: transformation ui ← ui/

√
Γi on non-isolated sites

– second: crucial differences due to column constraints
(⇒ dependencies between matrix elements beyond degree)

π(ω) = ∑
k≥1

p(k)
k

c

Z k−1

∏
ν=1

dπ(ων)
〈

δ
(

ω−Ωk−1

)

〉

{Kν}

with

Ωk−1 =
k−1

∑
ν=1

[

iλεKν +
K 2

ν
ων + iλεKν

]

.

In terms of these

ρ(λ) = p(0)δ(λ−1)+
1

π
Re ∑

k≥1

p(k)

Z k

∏
ν=1

dπ(ωℓ)

〈

∑k
ν=1 Kν

Ωk ({ων,Kν})

〉

{Kν}
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Analytically Tractable Limiting Cases
Unbiased Random Walk on Random Regular & Large- c Erdös-Renyi Graph

Recall FPE

π(ω) = ∑
k≥1

p(k)
k

c

Z k−1

∏
ν=1

dπ(ων) δ(ω−Ωk−1)

with Ωk−1 = iλεk +
k−1

∑
ν=1

1

ων
.

Regular Random Graphs p(k) = δk ,c . All sites equivalent.

⇒ Expect

π(ω) = δ(ω− ω̄) , ⇔ ω̄ = iλεc +
c−1

ω̄

Gives
ρ(λ) =

c

2π

√

4 c−1
c2 −λ2

1−λ2

⇔ Kesten-McKay distribution adapted to Markov matrices

Same result for large c Erdös-Renyi graphs⇒Wigner semi-circle
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Analytically Tractable Limiting Cases
General Markov Matricies for large- c Erdös-Renyi Graph

Recall FPE
π(ω) = ∑

k≥1

p(k)
k

c

Z k−1

∏
ℓ=1

dπ(ωℓ) 〈δ(ω−Ωk−1)〉{Kν}

with
Ωk−1 =

k−1

∑
ν=1

[

iλεKν +
K 2

ν
ων + iλεKν

]

.

Large c: contributions only for large k . Approximate Ωk−1 by sum of averages
(LLN).⇒ Expect

π(ω)≃ δ(ω− ω̄) , ⇔ ω̄≃ c

[

iλε〈K 〉+
〈

K 2

ω̄+ iλεK

〉

]

.

Gives ρ(λ) =
1

π
Re

[

c〈K 〉
ω̄

]

Is remarkably precise already for c ≃ 20. For large c, get semicircular law

ρ(λ) =
c

2π
〈K 〉2
〈K 2〉

√

4〈K 2〉
c〈K 〉2 −λ2
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Unbiased Random Walk

Spectral density: ki ∼ Poisson(2), W unbiased RW
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Simulation results, averaged over 5000 1000×1000 matrices (green);
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Unbiased Random Walk

Spectral density: ki ∼ Poisson(2), W unbiased RW

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1.5 -1 -0.5  0  0.5  1  1.5

ρ(
λ)

λ
Simulation results, averaged over 5000 1000×1000 matrices (green); population-dynamics results (red) added;
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Unbiased Random Walk

Spectral density: ki ∼ Poisson(2), W unbiased RW
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Simulation results, averaged over 5000 1000×1000 matrices (green); population-dynamics results (red) added;

population dynamics results: zoom into λ≃ 1 region. (total DOS green, extended states (red).
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Unbiased Random Walk

comparison population dynamics – cavity on single instance ki ∼
Poisson(2)
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Population dynamics results (blue) compared to results from cavity approach

on a single instance of N = 104 sites (green), both for total DOS
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Unbiased Random Walk–Regular Random Graph

comparison population dynamics – analytic result
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Population dynamics results (red) compared to analytic result (green) for RW on regular random graph at c = 4.
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Unbiased Random Walk–Large= c Erdös-Renyi

comparison population dynamics – analytic result
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Population dynamics results (red) compared to analytic result (green) for RW on Erdös-Renyi random graph at c = 100.
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Unbiased Random Walk–Scale Free Graphs

Random graphs with p(k) ∝ k−γ ,k ≥ kmin

 0.01
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Population dynamics results for RW on scale-free graph γ = 4 ,kmin = 1.

29 / 37



Unbiased Random Walk–Scale Free Graphs

Random graphs with p(k) ∝ k−γ ,k ≥ kmin

 0.01

 0.1

 1

 10

-1 -0.5  0  0.5  1

ρ(
λ)

λ

Simulation results (green) compared with population dynamics results (red) for a RW on scale-free graph γ = 4 ,kmin = 2.
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Unbiased Random Walk–Scale Free Graphs

Random graphs with p(k) ∝ k−γ ,k ≥ kmin
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Population dynamics results (extende DOS red, total DOS green) for a RW on scale-free graph γ = 4 ,kmin = 3.
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Stochastic Matrices
Spectral density: ki ∼ Poisson(2), p(Kij) ∝ K−1

ij ;Kij ∈ [e−β,1]

⇔ Kij = exp{−βVij} with Vij ∼ U[0,1]⇔ Kramers rates.
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Spectral density for stochastic matrices defined on Poisson random graphs with c = 2, and β = 2. Left: Simulation results (green)

compared with population dynamics results (red). Right: Population dynamics results, extended states (red), total DOS (green).
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Stochastic Matrices
Spectral density: ki ∼ Poisson(2), p(Kij) ∝ K−1

ij ;Kij ∈ [e−β,1]

⇔ Kij = exp{−βVij} with Vij ∼ U[0,1]⇔ Kramers rates.
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Spectral density for stochastic matrices defined on Poisson random graphs with c = 2, and β = 5. Left: Simulation results (green)

compared with population dynamics results (red); Right: Population dynamics results, extended states (red), total DOS (green).
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Stochastic Matrices

Spectral density: ki ∼ Poisson(2), p(Kij) ∝ K−1
ij ;Kij ∈ [e−β,1]

⇔ Kij = exp{−βVij} with Vij ∼ U[0,1]⇔ Kramers rates.
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Level-spacing distribution for stochastic matrices defined on Poisson random graphs with c = 2, and β = 2 (left), β = 5 (right). Also

shown are the predicions for GOE matrices (green) and the spacing distribution for Poisson points (blue).
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Stochastic Matrices – Large c Erdös Renyi

Kramers rates: comparison population dynamics – analytic result
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Population dynamics results (red) compared to analytic approximation (green) and asymptotic semicircular law (blue) for a Poisson

random graph at c = 20 (left) and c = 100 (right), with Kramers rates at β = 2.
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Summary

Computed DOS of Stochastic matrices defined on random graphs.

Analysis equivalent to alternative replica approach.

Restrictions: detailed balance & finite mean connectivity

Closed form solution for unbiased random walk on regular random graphs

Algebraic approximations for general Markov matrices on large c Erdös
Renyi graphs.

Get semicircular laws asymptotically at large c.

Localized states at edges of specrum implies finite maximal relaxation
time even in thermodynamic limit.

For p(Kij) ∝ K−1
ij ;Kij ∈ [e−β,1] see localization effects at large β and

concetration of DOS at edges of the spectrum (↔ relaxation time
spectrum dominated by slow modes⇒ Glassy Dynamics?
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