Spectra of Large Random Stochastic Matrices & Relaxation in Complex Systems

Reimer Kühn

Disordered Systems Group Department of Mathematics, King's College London

Warwick Statistical Mechanics Seminar, 30 Oct , 2014

University of London

1/37

Jeong et al, Nature (2001)

www.opte.org: Internet 2007

Outline

Introduction

- Discrete Markov Chains
- Spectral Properties Relaxation Time Spectra

2 Relaxation in Complex Systems

- Markov Matrices Defined in Terms of Random Graphs
- Applications: Random Walks, Relaxation in Complex Energy Landscapes

Spectral Density

- Approach
- Analytically Tractable Limiting Cases

Numerical Tests

Outline

Introduction

- Discrete Markov Chains
- Spectral Properties Relaxation Time Spectra

Relaxation in Complex Systems

- Markov Matrices Defined in Terms of Random Graphs
- Applications: Random Walks, Relaxation in Complex Energy Landscapes

3 Spectral Density

- Approach
- Analytically Tractable Limiting Cases

4 Numerical Tests

5 Summary

Discrete Markov Chains

• Discrete homogeneous Markov chain in an N-dimensional state space,

$$\mathbf{p}(t+1) = W\mathbf{p}(t) \qquad \Leftrightarrow \qquad p_i(t+1) = \sum_j W_{ij}p_j(t) \; .$$

Normalization of probabilities requires that W is a stochastic matrix,

$$W_{ij} \ge 0$$
 for all i, j and $\sum_{i} W_{ij} = 1$ for all j .

Implies that generally

$$\sigma(W) \subseteq \{z; |z| \leq 1\}$$
.

• If W satisfies a detailed balance condition, then

$$\sigma(W) \subseteq [-1,1]$$
.

Spectral Properties – Relaxation Time Spectra

- Perron-Frobenius Theorems: exactly one eigenvalue $\lambda_1^{\mu} = +1$ for every irreducible component μ of phase space.
- Assuming absence of cycles, all other eigenvalues satisfy

$$|\lambda^{\mu}_{\alpha}| < 1$$
, $\alpha \neq 1$.

• If system is overall irreducible: equilibrium is unique and convergence to equilibrium is exponential in time, as long as *N* remains finite:

$$\mathbf{p}(t) = W^{t} \mathbf{p}(0) = \mathbf{p}_{eq} + \sum_{\alpha(\neq 1)} \lambda_{\alpha}^{t} \mathbf{v}_{\alpha} \left(\mathbf{w}_{\alpha}, \mathbf{p}(0) \right)$$

Identify relaxation times

$$\tau_{\alpha} = -\frac{1}{\ln |\lambda_{\alpha}|}$$

 \iff spectrum of *W* relates to spectrum of relaxation times.

Outline

Introduction

- Discrete Markov Chains
- Spectral Properties Relaxation Time Spectra

Relaxation in Complex Systems

- Markov Matrices Defined in Terms of Random Graphs
- Applications: Random Walks, Relaxation in Complex Energy Landscapes

Spectral Density

- Approach
- Analytically Tractable Limiting Cases

4 Numerical Tests

5 Summary

Markov matrices defined in terms of random graphs

- Interested in behaviour of Markov chains for large N, and transition matrices describing complex systems.
- Define in terms of weighted random graphs.
 - Start from a rate matrix $\Gamma = (\Gamma_{ij}) = (c_{ij}K_{ij})$
 - on a random graph specified by

a connectivity matrix $C = (c_{ij})$, and edge weights $K_{ij} > 0$.

Set Markov transition matrix elements to

$$W_{ij} = \begin{cases} \begin{array}{ll} \frac{\Gamma_{ij}}{\Gamma_j} & , \ i \neq j \ , \\ 1 & , \ i = j \ , \ \text{ and } \ \Gamma_j = 0 \ , \\ 0 & , \ \text{otherwise} \ , \end{array}$$

where $\Gamma_j = \sum_i \Gamma_{ij}$.

9/37

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○

Master-Equation Operator

• Master-equation operator related to Markov transition matrix W,

$$M_{ij} = \begin{cases} \frac{\Gamma_{ij}}{\Gamma_j} &, i \neq j ,\\ -1 &, i = j , \text{and } \Gamma_j \neq 0 ,\\ 0 &, \text{ otherwise } , \end{cases}$$

in terms of which

$$p_i(t+1) - p_i(t) = \sum_j [W_{ij}p_j(t) - W_{ji}p_i(t)] = \sum_j M_{ij}p_j(t) .$$

• Special case: unbiased random walk, with $K_{ij} = 1$, so

$$W_{ij} = rac{c_{ij}}{k_j}$$
, $k_j = \sum_i c_{ij}$

for which

$$M_{ij} = \begin{cases} \frac{c_{ij}}{k_j} & , i \neq j ,\\ -1 & , i = j , \text{and } k_j \neq 0\\ 0 & , \text{ otherwise } . \end{cases}$$

10/37

Symmetrization

• Markov transition matrix can be symmetrized by a similarity transformation, if it satisfies a detailed balance condition w.r.t. an equilibrium distribution $p_i = p_i^{eq}$

$$W_{ij}p_j = W_{ji}p_i$$

• Symmetrized by $W = P^{-1/2}WP^{1/2}$ with $P = \text{diag}(p_i)$

$$\mathcal{W}_{ij} = \frac{1}{\sqrt{p_i}} W_{ij} \sqrt{p_j} = \mathcal{W}_{ji}$$

• Symmetric structure is inherited by transformed master-equation operator $\mathcal{M} = P^{-1/2} M P^{1/2}$,

$$\mathcal{M}_{ij} = \left\{ egin{array}{ccc} \mathcal{W}_{ij} &, i
eq j \ , & -1 &, i = j \ , & ext{and} \ k_j
eq 0 \ & ext{, otherwise} \end{array}
ight.$$

• Computation of spectra below so far restricted to this case.

11/37

Applications I – Unbiased Random Walk

 Unbiased random walks on complex networks: K_{ij} = 1; transitions to neighbouring vertices with equal probability:

$$W_{ij}=rac{c_{ij}}{k_j},\quad i
eq j,$$

and $W_{ii} = 1$ on isolated sites ($k_i = 0$).

Symmetrized version is

$$\mathcal{W}_{ij} = rac{\mathbf{c}_{ij}}{\sqrt{\mathbf{k}_i \mathbf{k}_j}} , \quad i \neq j ,$$

and $\mathcal{W}_{ii} = 1$ on isolated sites.

 Symmetrized master-equation operator known as normalized graph Laplacian

$$\mathcal{L}_{ij} = \begin{cases} \frac{c_{ij}}{\sqrt{k_i k_j}} &, i \neq j \\ -1 &, i = j \text{, and } k_i \neq 0 \\ 0 &, \text{ otherwise } . \end{cases}$$

Applicatons II – Non-uniform Edge Weights

- Internet traffic (hopping of data packages between routers)
- Relaxation in complex energy landscapes; Kramers transition rates for transitions between long-lived states; e.g.:

$$\Gamma_{ij} = c_{ij} \exp\left\{-\beta(V_{ij}-E_j)
ight\}$$

with energies E_i and barriers V_{ij} from some random distribution. \Leftrightarrow generalized trap models.

 Markov transition matrices of generalized trap models satisfy a detailed balance condition with _____

$$p_i = \frac{\Gamma_i}{Z} e^{-\beta E}$$

 \Rightarrow can be symmetrized.

Outline

Introduction

- Discrete Markov Chains
- Spectral Properties Relaxation Time Spectra
- Relaxation in Complex Systems
 - Markov Matrices Defined in Terms of Random Graphs
 - Applications: Random Walks, Relaxation in Complex Energy Landscapes

Spectral Density

- Approach
- Analytically Tractable Limiting Cases

Numerical Tests

5 Summary

Spectral Density and Resolvent

• Spectral density from resolvent (A = W, L, M)

$$\rho_{\mathcal{A}}(\lambda) = \frac{1}{\pi N} \text{Im Tr} \left[\lambda_{\varepsilon} \mathbf{I} - \mathcal{A} \right]^{-1}, \qquad \lambda_{\varepsilon} = \lambda - i\varepsilon$$

Express as (S F Edwards & R C Jones, JPA, 1976)

$$\begin{split} \rho_{A}(\lambda) &= \frac{1}{\pi N} \operatorname{Im} \frac{\partial}{\partial \lambda} \operatorname{Tr} \ln \left[\lambda_{\varepsilon} \mathbf{I} - A \right] \\ &= -\frac{2}{\pi N} \operatorname{Im} \frac{\partial}{\partial \lambda} \ln Z_{N} \; , \end{split}$$

where Z_N is a Gaussian integral:

$$Z_N = \int \prod_k rac{\mathrm{d} u_k}{\sqrt{2\pi/\mathrm{i}}} \, \exp \Big\{ -rac{\mathrm{i}}{2} \sum_{k,\ell} u_k (\lambda_\epsilon \delta_{k\ell} - A_{k\ell}) u_\ell \Big\} \, .$$

Spectral density expressed in terms of single site-variances

$$\rho_{A}(\lambda) = \frac{1}{\pi N} \operatorname{Re} \sum_{i} \langle u_{i}^{2} \rangle ,$$

15/37

Large Single Instances

- I. Investigate single large instances
 - Use cavity method to evaluates single-site marginals

$$P(u_i) \propto \exp\left\{-\frac{\mathrm{i}}{2}\lambda_{\varepsilon} u_i^2\right\} \int \prod_{j \in \partial i} \mathrm{d} u_j \exp\left\{\mathrm{i} \sum_{j \in \partial i} A_{ij} u_i u_j\right\} P_j^{(i)}(u_j) ,$$

• On a (locally) tree-like graph get recursion for the cavity distributions,

$$\mathcal{P}_{j}^{(i)}(u_{j}) \propto \exp\left\{-\frac{\mathrm{i}}{2}\lambda_{\varepsilon} u_{j}^{2}\right\} \prod_{\ell \in \partial j \setminus i} \int \mathrm{d} u_{\ell} \exp\left\{\mathrm{i} A_{j\ell} u_{j} u_{\ell}\right\} \mathcal{P}_{\ell}^{(j)}(u_{\ell}) \ .$$

• Cavity recrsions self-consistently solved by (complex) Gaussians.

$$P_{j}^{(i)}(u_{j}) = \sqrt{\omega_{j}^{(i)}/2\pi} \exp\left\{-\frac{1}{2}\omega_{j}^{(i)}u_{j}^{2}
ight\},$$

generate recursion for inverse cavity variances

$$\omega_{j}^{(i)} = \mathrm{i}\lambda_{\epsilon} + \sum_{\ell \in \partial j \setminus i} \frac{A_{j\ell}^2}{\omega_{\ell}^{(j)}} \; .$$

• Solve iteratively on single instances for $N = O(10^5)$

16/37

Thermodynamic Limit

- Recursions for inverse cavity variances can be interpreted as stochastic recursions, generating a self-consistency equation for their pdf π(ω).
 - Structure for (up to symmetry) i.i.d matrix elements $A_{ij} = c_{ij}K_{ij}$ RK J Phys A (2008)

$$\pi(\omega) = \sum_{k \ge 1} p(k) \frac{k}{c} \int \prod_{\nu=1}^{k-1} \mathrm{d}\pi(\omega_{\nu}) \langle \delta(\omega - \Omega_{k-1}) \rangle_{\{K_{\nu}\}}$$

with

$$\Omega_{k-1} = \Omega_{k-1}(\{\omega_{v}, \mathcal{K}_{v}\}) = i\lambda_{\varepsilon} + \sum_{v=1}^{k-1} \frac{\mathcal{K}_{v}^{2}}{\omega_{v}}$$

 Solve using population dynamics algorithm. Mézard, Parisi (2001) & get spectral density:

$$\rho(\lambda) = \frac{1}{\pi} \operatorname{Re} \sum_{k} \rho(k) \int \prod_{v=1}^{k} \mathrm{d}\pi(\omega_{\ell}) \left\langle \frac{1}{\Omega_{k}(\{\omega_{v}, \mathcal{K}_{v}\})} \right\rangle_{\{\mathcal{K}_{v}\}}$$

Can identify continuous and pure point contributions to DOS.

Self-Consistency Equations & Spectral Density Unbiased Random Walk

• Self-consistency equations for pdf of inverse cavity variances; – first: transformation $u_i \leftarrow u_i / \sqrt{k_i}$ on non-isolated sites

$$\pi(\omega) = \sum_{k \ge 1} p(k) \frac{k}{c} \int \prod_{\ell=1}^{k-1} \mathrm{d}\pi(\omega_{\ell}) \, \delta(\omega - \Omega_{k-1})$$

with

$$\Omega_{k-1} = \Omega_{k-1}(\{\omega_{\ell}\}) = \mathrm{i}\lambda_{\varepsilon}k + \sum_{\ell=1}^{k-1} \frac{1}{\omega_{\ell}}.$$

- Solve using stochastic (population dynamics) algorithm.
- In terms of these

$$\rho(\lambda) = \rho(0)\,\delta(\lambda - 1) + \frac{1}{\pi}\,\mathsf{Re}\sum_{k\geq 1} \rho(k)\int \prod_{\ell=1}^k \mathrm{d}\pi(\omega_\ell)\;\frac{k}{\Omega_k(\{\omega_\ell\})}$$

Self-Consistency Equations & Spectral Density General Markov Matrices

- Same structure superficially;
 - first: transformation $u_i \leftarrow u_i / \sqrt{\Gamma_i}$ on non-isolated sites
 - second: crucial differences due to column constraints
 - $(\Rightarrow$ dependencies between matrix elements beyond degree)

$$\pi(\omega) = \sum_{k\geq 1} p(k) \frac{k}{c} \int \prod_{\nu=1}^{k-1} \mathrm{d}\pi(\omega_{\nu}) \left\langle \delta(\omega - \Omega_{k-1}) \right\rangle_{\{K_{\nu}\}}$$

with

$$\Omega_{k-1} = \sum_{\nu=1}^{k-1} \left[i\lambda_{\varepsilon} K_{\nu} + \frac{K_{\nu}^{2}}{\omega_{\nu} + i\lambda_{\varepsilon} K_{\nu}} \right]$$

In terms of these

$$\rho(\lambda) = \rho(0)\,\delta(\lambda-1) + \frac{1}{\pi}\,\mathsf{Re}\sum_{k\geq 1}\rho(k)\int\prod_{\nu=1}^{k}\mathrm{d}\pi(\omega_{\ell})\,\left\langle\frac{\sum_{\nu=1}^{k}K_{\nu}}{\Omega_{k}(\{\omega_{\nu},K_{\nu}\})}\right\rangle_{\{K_{\nu}\}}$$

・ロト ・個 ト ・ ヨト ・ ヨト … ヨー

Analytically Tractable Limiting Cases Unbiased Random Walk on Random Regular & Large-*c* Erdös-Renyi Graph

Recall FPE

with

$$\pi(\omega) = \sum_{k \ge 1} p(k) rac{k}{c} \int \prod_{
u=1}^{k-1} \mathrm{d}\pi(\omega_{
u}) \, \delta(\omega - \Omega_{k-1})
onumber \ \Omega_{k-1} = \mathrm{i} \lambda_{arepsilon} k + \sum_{
u=1}^{k-1} rac{1}{\omega_{
u}} \; .$$

• Regular Random Graphs $p(k) = \delta_{k,c}$. All sites equivalent.

•
$$\Rightarrow$$
 Expect
 $\pi(\omega) = \delta(\omega - \bar{\omega}), \quad \Leftrightarrow \quad \bar{\omega} = i\lambda_{\epsilon}c + \frac{c-1}{\bar{\omega}}$
• Gives
 $\rho(\lambda) = \frac{c}{2\pi} \frac{\sqrt{4\frac{c-1}{c^2} - \lambda^2}}{1 - \lambda^2}$

- Kesten-McKay distribution adapted to Markov matrices
- Same result for large c Erdös-Renyi graphs ⇒ Wigner semi-circle

Analytically Tractable Limiting Cases General Markov Matricies for large-c Erdös-Renyi Graph

• Recall FPE

$$\pi(\omega) = \sum_{k \ge 1} p(k) \frac{k}{c} \int \prod_{\ell=1}^{k-1} d\pi(\omega_{\ell}) \langle \delta(\omega - \Omega_{k-1}) \rangle_{\{K_{v}\}}$$
with

$$\Omega_{k-1} = \sum_{v=1}^{k-1} \left[i\lambda_{\varepsilon}K_{v} + \frac{K_{v}^{2}}{\omega_{v} + i\lambda_{\varepsilon}K_{v}} \right].$$

• Large c: contributions only for large k. Approximate Ω_{k-1} by sum of averages (LLN). \Rightarrow Expect

$$\begin{split} \pi(\omega) \simeq \delta(\omega - \bar{\omega}) \,, & \Leftrightarrow & \bar{\omega} \simeq c \Bigg[i \lambda_{\epsilon} \langle K \rangle + \left\langle \frac{K^2}{\bar{\omega} + i \lambda_{\epsilon} K} \right\rangle \Bigg] \,. \\ \bullet \quad \text{Gives} & \rho(\lambda) = \frac{1}{\pi} \text{Re} \Bigg[\frac{c \langle K \rangle}{\bar{\omega}} \Bigg] \end{split}$$

• Is remarkably precise already for $c \simeq 20$. For large c, get semicircular law

$$\rho(\lambda) = \frac{c}{2\pi} \frac{\langle K \rangle^2}{\langle K^2 \rangle} \sqrt{\frac{4 \langle K^2 \rangle}{c \langle K \rangle^2}} - \lambda^2$$

21/37

Outline

Introduction

- Discrete Markov Chains
- Spectral Properties Relaxation Time Spectra

Relaxation in Complex Systems

- Markov Matrices Defined in Terms of Random Graphs
- Applications: Random Walks, Relaxation in Complex Energy Landscapes

3 Spectral Density

- Approach
- Analytically Tractable Limiting Cases

Numerical Tests

Summary

Simulation results, averaged over 5000 1000 × 1000 matrices (green);

• Spectral density: $k_i \sim \text{Poisson(2)}$, \mathcal{W} unbiased RW

Simulation results, averaged over 5000 1000 × 1000 matrices (green); population-dynamics results (red) added;

• Spectral density: $k_i \sim \text{Poisson(2)}$, \mathcal{W} unbiased RW

Simulation results, averaged over 5000 1000 × 1000 matrices (green); population-dynamics results (red) added;

population dynamics results: zoom into $\lambda \simeq 1$ region. (total DOS green, extended states (red).

comparison population dynamics – cavity on single instance k_i ~ Poisson(2)

Population dynamics results (blue) compared to results from cavity approach

on a single instance of $N = 10^4$ sites (green), both for total DOS

A B > A
 B > A
 B

Unbiased Random Walk–Regular Random Graph

comparison population dynamics – analytic result

Population dynamics results (red) compared to analytic result (green) for RW on regular random graph at c = 4.

Unbiased Random Walk–Large=c Erdös-Renyi

comparison population dynamics – analytic result

Population dynamics results (red) compared to analytic result (green) for RW on Erdös-Renyi random graph at c = 100.

Unbiased Random Walk–Scale Free Graphs

• Random graphs with $p(k) \propto k^{-\gamma}$, $k \ge k_{\min}$

Population dynamics results for RW on scale-free graph $\gamma = 4$, $k_{\min} = 1$.

Unbiased Random Walk–Scale Free Graphs

• Random graphs with $p(k) \propto k^{-\gamma}$, $k \ge k_{\min}$

Simulation results (green) compared with population dynamics results (red) for a RW on scale-free graph $\gamma = 4$, $k_{min} = 2$.

Unbiased Random Walk–Scale Free Graphs

• Random graphs with $p(k) \propto k^{-\gamma}$, $k \ge k_{\min}$

Population dynamics results (extende DOS red, total DOS green) for a RW on scale-free graph $\gamma = 4$, $k_{\min} = 3$.

Stochastic Matrices

• Spectral density: $k_i \sim \text{Poisson(2)}, p(K_{ij}) \propto K_{ij}^{-1}; K_{ij} \in [e^{-\beta}, 1]$

 $\Leftrightarrow K_{ij} = exp\{-\beta V_{ij}\}$ with $V_{ij} \sim U[0,1] \Leftrightarrow$ Kramers rates.

Spectral density for stochastic matrices defined on Poisson random graphs with c = 2, and $\beta = 2$. Left: Simulation results (green) compared with population dynamics results. extended states (red), total DOS (green).

Stochastic Matrices

• Spectral density: $k_i \sim \text{Poisson(2)}, p(K_{ij}) \propto K_{ij}^{-1}; K_{ij} \in [e^{-\beta}, 1]$

 $\Leftrightarrow K_{ij} = exp\{-\beta V_{ij}\}$ with $V_{ij} \sim U[0,1] \Leftrightarrow$ Kramers rates.

Spectral density for stochastic matrices defined on Poisson random graphs with c = 2, and $\beta = 5$. Left: Simulation results (green) compared with population dynamics results (red); Right: Population dynamics results, extended states (red), total DOS (green).

Stochastic Matrices

• Spectral density: $k_i \sim \text{Poisson(2)}, p(K_{ij}) \propto K_{ij}^{-1}; K_{ij} \in [e^{-\beta}, 1]$

 $\Leftrightarrow \textit{K}_{ij} = \textit{exp}\{-\beta\textit{V}_{ij}\} \hspace{0.1 in} \text{with} \hspace{0.1 in} \textit{V}_{ij} \sim \textit{U}[0,1] \Leftrightarrow \hspace{0.1 in} \text{Kramers rates}.$

Level spacings

Level-spacing distribution for stochastic matrices defined on Poisson random graphs with c = 2, and $\beta = 2$ (left), $\beta = 5$ (right). Also shown are the predictions for GOE matrices (green) and the spacing distribution for Poisson points (blue).

Stochastic Matrices – Large *c* Erdös Renyi

Kramers rates: comparison population dynamics – analytic result

Population dynamics results (red) compared to analytic approximation (green) and asymptotic semicircular law (blue) for a Poisson random graph at c = 20 (left) and c = 100 (right), with Kramers rates at $\beta = 2$.

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Outline

Introduction

- Discrete Markov Chains
- Spectral Properties Relaxation Time Spectra

Relaxation in Complex Systems

- Markov Matrices Defined in Terms of Random Graphs
- Applications: Random Walks, Relaxation in Complex Energy Landscapes

3 Spectral Density

- Approach
- Analytically Tractable Limiting Cases

4 Numerical Tests

Summary

- Computed DOS of Stochastic matrices defined on random graphs.
- Analysis equivalent to alternative replica approach.
- Restrictions: detailed balance & finite mean connectivity
- Closed form solution for unbiased random walk on regular random graphs
- Algebraic approximations for general Markov matrices on large *c* Erdös Renyi graphs.
- Get semicircular laws asymptotically at large c.
- Localized states at edges of specrum implies finite maximal relaxation time even in thermodynamic limit.
- For p(K_{ij}) ∝ K⁻¹_{ij}; K_{ij} ∈ [e^{-β}, 1] see localization effects at large β and concetration of DOS at edges of the spectrum (↔ relaxation time spectrum dominated by slow modes ⇒ Glassy Dynamics?