Inverting the signature of a path

Weijun Xu
Joint work with Terry Lyons

November 6, 2014

The signature of a path

Euclidean coordinates: $w=e_{i_{1}} \cdots e_{i_{n}}$; define

$$
C(w)=\int_{0<u_{1}<\cdots<u_{n}<1} d \gamma_{u_{1}}^{i_{1}} \cdots d \gamma_{u_{n}}^{i_{n}} .
$$

The signature of γ is the collection of all $C(w)$'s, denoted by $\boldsymbol{X}(\gamma)$. It captures the ordered evolution along the path through the order of the letters.

Examples:
(1) $a x * b y \mapsto \exp (a x) \exp (b y)$;
(2) by $* a x \mapsto \exp (b y) \exp (a x)$;
(3) $a x+b y \mapsto \exp (a x+b y)$.

Applications

Crisan-Litterer-Lyons: Nonlinear filtering

Graham: Handwriting recognition, music sound compression.

Ni-Oberhauser: Time series analysis for high frequency data

Papavasiliou-Ladroue: Parameter estimation for rough differential equations

Uniqueness

Hambly-Lyons: paths of finite lengths are uniquely determined by their signatures.

If α, β are two paths of finite lengths, then $X(\alpha)=X(\beta)$ if and only if $\alpha * \beta^{-1}$ is equivalent to a null path.

Question: how to reconstruct the reduced path from its signature?

Boedihardjo-Geng-Lyons-Yang: uniqueness for rough paths.

Theorem (Lyons, X.)

By using the signature $X(\gamma)$ only, we can find a piecewise linear path $\tilde{\gamma}$ with k pieces such that

$$
\sup _{u \in[0,1]}\left|\tilde{\gamma}_{u}^{\prime}-\gamma_{u}^{\prime}\right|<C \epsilon_{k}
$$

when both are parametrized at unit speed (with respect to ℓ^{1} norm), and $\epsilon_{k} \rightarrow 0$ depending on modulus of continuity of γ^{\prime}.

Commutative in smaller scales; noncommutative in larger scales.
Key: how to rule out noncommutativity in small scales?

Main reconstruction theorem

The piecewise linear path $\tilde{\gamma}$ has the form

$$
\tilde{\gamma}=\tilde{\gamma_{1}} * \cdots * \tilde{\gamma_{k}},
$$

where

$$
\tilde{\gamma}_{j}=\frac{\tilde{L}}{k}\left(a_{x}^{(j)} \rho_{j} x+a_{y}^{(j)}\left(1-\rho_{j}\right) y\right)
$$

Hope: each $\tilde{\gamma}_{j}$ approximates $\gamma_{\left[\frac{j-1}{k}, \frac{j}{k}\right]}$ in the ℓ^{1} sense.
$\rho_{j}, 1-\rho_{j} \in[0,1]$ represents the unsigned direction;
$a_{x}^{(j)}, a_{y}^{(j)} \in\{ \pm 1\}$ represents the sign;
$\tilde{L}>0$ approximates the ℓ^{1} length.

Recovering the increment

Symmetrization averages out the order.
Summing over all words of length n with $k x$'s and $n-k y$'s:

$$
\mathcal{S}(k, n-k)=\sum_{\mathcal{W}_{k, n-k}} C(w)=\binom{n}{k}(\Delta x)^{k}(\Delta y)^{n-k}
$$

Maximum: $\frac{k^{*}}{n-k^{*}} \approx \frac{|\Delta x|}{|\Delta y|} \quad \Rightarrow \quad$ recovers unsigned direction.

$$
\sum_{\left|k-k^{*}\right|<\epsilon}|\mathcal{S}(k, n-k)| \approx \sum_{k}|\mathcal{S}(k, n-k)|
$$

Move one level up: comparing $\mathcal{S}\left(k^{*}+1, n-k^{*}\right)$ and $\mathcal{S}\left(k^{*}, n-k^{*}\right)$ gives the sign of the x direction.

Symmetrization

Symmetrizing k blocks with block size $2 n$:

$$
\underbrace{* * * * *}_{2 n} e_{i_{1}} \underbrace{* * * * *}_{2 n} e_{i_{2}} \cdots \cdots e_{i_{k-1}} \underbrace{* * * * *}_{2 n}
$$

Key: pattern in block j are roughly determined by $\gamma_{\left[\frac{j-1}{k}, \frac{j}{k}\right]}$.
Steps:
(1) Recovering the unsigned directions by checking non-degeneracy.
(2) Recovering the signs by moving one level up.
(3) Recovering the length by a scaling argument.

Remark: only uses level $2 n k+k-1$ and $2 n k+k$.

Consequences of the reconstruction:
(1) Tail signatures already determine \mathcal{C}^{1} paths.
(2) Higher level signatures describe finer structures of the path. Quantitative description?

What have we learned?
(1) Symmetrization counts the frequency but neglects the order; so it gives local increments.
(2) A certain non-degeneracy criterion is often needed in recovering the directions.

