 Assignment 8

Problem 1. Let X be a Hilbert space. Show that if T is a bounded, positive definite operator on X, then $(X, \langle \cdot, T \cdot \rangle)$ is a Hilbert space iff there exists $c > 0$ such that

$$
(x, Tx) \geq c \|x\|^2
$$

for any x. Hint: One direction is easy. For the other direction, consider the inclusion map

$$
\iota : (X, \langle \cdot, \cdot \rangle) \to (X, \langle \cdot, T \cdot \rangle)
$$

$x \mapsto x$,

and use the inverse mapping theorem. (Thanks to Michael Doré for the hint!)

Problem 2. Let $T \in \mathcal{B}(X)$, and $\alpha, \beta \in \rho(T)$. Let $R_\alpha = (T - \alpha I)^{-1}$ denote the resolvent.

(a) Show that it satisfies the Hilbert relation (or resolvent equation)

$$
R_\alpha - R_\beta = (\alpha - \beta)R_\alpha R_\beta.
$$

(b) Show that $R_\alpha R_\beta = R_\beta R_\alpha$.

Problem 3. (Shift operators) We consider the right and left shift operators on $\ell^2(\mathbb{N})$:

$$
S(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots),
$$

$$
T(x_1, x_2, \ldots) = (x_2, x_3, \ldots).
$$

(a) Find $\|S\|$, $\|T\|$, S^*, T^*, S^{-1}, T^{-1}.

(b) Find ran S, ran T, ker S, ker T, and check that

$$
\text{ran } S = (\ker T)^\perp, \quad \text{ran } T = (\ker S)^\perp.
$$

(c) Find the spectrum of S and T.

Problem 4. Let $T \in \mathcal{B}(X)$. Show that

(a) If $u_1, \ldots, u_n \in X$ are eigenvectors of T corresponding to distinct eigenvalues, then $\{u_1, \ldots, u_n\}$ forms a linearly independent set.

(b) If $T = T^*$, and M is an invariant subspace (that is, $T(M) \subset M$), then M^\perp is also invariant.

Problem 5. The lottery question. Give a correct solution to Michael Doré by Tuesday, and enter the lottery for a bottle wine!

Let ℓ_0 be the space of all sequences of complex numbers (x_1, x_2, \ldots) with finitely many nonzero entries. Can you find a norm such that ℓ_0 is complete? If yes, give it. If not, prove there exists none.

(I heard that Baire category theorem might help.)