Assignment 4

Problem 1. Recall that a map between topological spaces is open iff the image of each open set is open. Show that a linear map between normed spaces is open iff the image of the unit ball (around 0) contains a ball around 0.

Problem 2. Let X, Y, Z be normed spaces, and $S : X \to Y$ and $T : Y \to Z$ be operators.

(a) Show that $\|T \circ S\| \leq \|S\| \|T\|$.
(b) Give an example where $\|T \circ S\| < \|S\| \|T\|$.

Problem 3. Let X be the space of sequences $x = (x_1, x_2, \ldots)$ of complex numbers with finitely many nonzero terms. We consider the norm $\|x\| = \sup_i |x_i|$. Define $T : X \to X$ by

$$Tx = (x_1, \frac{1}{2}x_2, \frac{1}{3}x_3, \ldots)$$

Show that T is linear and bounded. Show that T is bijective but that T^{-1} is unbounded. Does this contradict the Inverse Mapping Theorem?

Problem 4. Let $T : X \to Y$ be a bounded operator between Banach spaces X and Y. Show that, if T is bijective, there exist constants c_1 and c_2 such that

$$c_1 \|x\| \leq \|Tx\| \leq c_2 \|x\|$$

for all $x \in X$.

Problem 5. Here is an exercise that belongs more to analysis than to functional analysis, but it is a beautiful application of Baire Category Theorem. Show that there exist continuous functions on $[0, 1]$ that are nowhere differentiable.

To that purpose, introduce the set A_n of functions $f \in C([0, 1], \mathbb{R})$ such that there exists x_0 (that depends on f) such that $|f(x) - f(x_0)| \leq n|x - x_0|$ for all $x \in [0, 1]$.

(a) Show that A_n is nowhere dense in $C([0, 1])$ (with the sup norm).
(b) Show that if f is differentiable at some $x \in [0, 1]$, then $f \in \bigcup_n A_n$.
(c) Use Baire Theorem to show that $\bigcup_n A_n \not\subseteq C([0, 1])$.