Assignment 3

Due: Monday 26 October, 3:00pm.

- 1. Prove that each of the following sequences tends to infinity
 - a. $a_n = n + 10$
 - b. $a_n = \sqrt{n} + \sin n$
 - c. $a_n = 2^{\sqrt{n}}$
- 2. Prove that none of the following sequences tends to infinity
 - a. $a_n = 40 \frac{1}{n}$
 - b. $b_n = \cos(n^2 + 7)$ c. $c_n = 2^{\sin(n\pi)}$
- 3. Prove that a sequence which is bounded above cannot tend to infinity.
- **4.** A sequence is known to be increasing.
 - (a) Might it have an upper bound?
 - (b) Might it have a lower bound?
 - (c) Must it have an upper bound?
 - (d) Must it have a lower bound?
- **5.** Prove
 - (i) Sum Rule
 - (ii) Product Rule
 - (iii) Quotient Rule

for sequences.

- **6.** Find the limit of the sequences defined below
 - a. $\frac{7n^2+8}{4n^2-3n}$ b. $\frac{2^n+1}{2^n-1}$

 - c. $\frac{(\sqrt{n}+3)(\sqrt{n}-2)}{4\sqrt{n}-5n}$ d. $\frac{1+2+..+n}{n^2}$