Assignment 4

Analysis I Daniel Ueltschi

Due: Monday, 2 November, 3:00pm.

1. Find the limit of each of the sequences defined below

a.
$$a_n = \sqrt[n]{1^2 + 2^2 + \dots n^2}$$

b.
$$a_n = \frac{n+\sin n^2}{n+\cos n}$$

c.
$$a_n = \frac{1-2+3-4+...+(-2n)}{\sqrt{n^2+1}}$$

- **2.** Prove or disprove the following statement "Suppose $(a_n) \to a$. If $a_n > 0$ for all n then a > 0."
- **3.** Prove the following theorem: If $(a_n) \to a$, $(b_n) \to b$ and $a_n \le b_n$ for all n then $a \le b$.
- **4.** Let $(a_n) = (n^2)$. Write down the first four terms of the three subsequences (a_{n+1}) , (a_{3n-1}) and (a_{2n}) .
- **5.**Prove that every subsequence of a bounded sequence is bounded.
- **6.** Use a calculator to explore the limit of $(2^n + 3^n)^{1/n}$. Now find the limit of the sequence $(x^n + y^n)^{1/n}$ when $0 \le x \le y$.
- 7. Write down the conjectured limit for the power sequence $(a_n = x^n)$ (Warning: you should get four different possible answers depending on the value of x.) Then prove your conjectures.
- **8.** State whether the following sequences tend to zero or infinity. Prove your answers.

$$(a)\left(\frac{n^{1000}}{2^n}\right)$$

$$(c)\left(\frac{n!}{n^{1000}}\right)$$

$$(b)\left(\frac{(1.001)^n}{n}\right)$$

$$(d)\left(\frac{(n!)^2}{(2n)!}\right)$$

9. Find the limits of the following sequences. Give reasons.

$$(a)\left(\frac{n^411^n + n^99^n}{7^{2n} + 1}\right)$$

$$(c)\left(\frac{3n^3 + n\cos^2 n}{n^2 + \sin n}\right)$$

$$(b)\left((4^{10}+2^n)^{1/n}\right)$$

$$(d)\left((3n^2+n)^{1/n}\right)$$