Assignment 7

Analysis I

Daniel Ueltschi

Due: Monday, 23 November, 3:00pm.

Problem 1. Consider the series $1 + 2 + 3 + ... = \sum_{k=1}^{\infty} k$. Give a precise explanation of either (i) or (ii).

- (i) $1+2+3+...=\infty$.
- (ii) $1+2+3+...=-\frac{1}{12}$.

Problem 2. Find the sum of the series

- (a) $\sum_{n=1}^{\infty} \frac{1}{10^n}$.
- (b) $\sum_{n=1}^{\infty} \frac{9}{10^n}$.
- (c) $\sum_{n=1}^{\infty} \frac{1}{4n^2-1}$. Hint: the series $\sum \frac{1}{2n-1}$ and $\sum \frac{1}{2n+1}$ may help.

Problem 3. Find N such that

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N} > 10$$

Give reasons.

Problem 4. Prove the Sum Rule for series.

Problem 5. Prove the Shift Rule for series.

Problem 6. Give an example of a divergent series $\sum_{n=1}^{\infty} a_n$ for which $(a_n) \to 0$.

Problem 7. Prove that if $\sum_{n=1}^{\infty} a_n$ converges, then $(a_n) \to 0$.

Problem 8. Use the Comparison Test to decide whether the following series are convergent or divergent.

- (a) $\sum_{n=1}^{\infty} \frac{1}{n^n}$.
- (b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}.$
- (c) $\sum_{n=1}^{\infty} \frac{n+\sin n}{n^2+\cos n}.$
- (d) d. $\sum_{n=1}^{\infty} \frac{n \sin n}{4^n}$