Assignment 8

Analysis I

Daniel Ueltschi

Due: Monday 30 November, 3:00pm.

Problem 1. Use the Comparison Test to determine whether each of the following series converges or diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2+1}}$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^7+1}}$$

(c)
$$\sum_{n=1}^{\infty} (\sqrt{n+1} - \sqrt{n})$$

Problem 2. Determine whether each of the following series converges or diverges. Make your reasoning clear.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}$$

(b)
$$\sum_{n=1}^{\infty} \frac{5^n + 4^n}{7^n - 2^n}$$

Problem 3. Let $a_n = \frac{n^2}{2^n}$. Prove that if $n \geq 3$, then

$$\frac{a_{n+1}}{a_n} \le \frac{8}{9}.$$

By using this inequality for n = 3, 4, 5, ..., prove that

$$a_{n+3} \le \left(\frac{8}{9}\right)^n a_3.$$

Using the Comparison Test and results concerning the convergence of the Geometric Series, show that $\sum_{n=1}^{\infty} a_{n+3}$ is convergent. Now use the Shift Rule to show that $\sum_{n=1}^{\infty} a_n$ is convergent.

Problem 4. Write down an example of a convergent series and a divergent series both of which satisfy the condition $\frac{a_{n+1}}{a_n} \to 1$.

Problem 5. Use the Ratio Test to determine whether each of the following series converges or diverges. Make your reasoning clear. (a) $\sum_{n=1}^{\infty} \frac{2^n}{n!}$ (b) $\sum_{n=1}^{\infty} \frac{3^n}{n^n}$ (c) $\sum_{n=1}^{\infty} \frac{n!}{n^{n/2}}$

(a)
$$\sum_{n=1}^{\infty} \frac{2^n}{n!}$$

(b)
$$\sum_{n=1}^{\infty} \frac{3^n}{n^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{3^n}{n^n}$$
 (c) $\sum_{n=1}^{\infty} \frac{n!}{n^{n/2}}$

Problem 6. Show that $\sum_{n=101}^{200} \frac{1}{k} = \frac{1}{101} + \frac{1}{102} + ... + \frac{1}{200} \in [0.688, 0.694].$

Problem 7. Show that (a) $\sum_{n=1}^{\infty} \frac{1}{(n+1)\log(n+1)}$ is divergent;

(b)
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)(\log(n+1))^2}$$
 is convergent.