Assignment 9

Analysis I

Daniel Ueltschi

Due: Monday 7 December, 3:00pm.

Problem 1. Let $s = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. Use $|s - s_n| \leq \frac{1}{n}$ to find a value of N so that

$$\left|\sum_{n=1}^{N} \frac{(-1)^{n+1}}{n} - s\right| \le 10^{-6}.$$

Problem 2. Find a sequence (a_n) which is non-negative and strictly decreasing but where $\sum (-1)^{n+1}a_n$ is divergent and a sequence (b_n) which is non-negative and null but where $\sum (-1)^{n+1}b_n$ is divergent. In both cases, give reasons.

Problem 3. Using the Alternating Series Test where appropriate, show that each of the following series is convergent.

$$a) \sum \frac{(-1)^{n+1}n}{n^3+1}$$

a)
$$\sum \frac{(-1)^{n+1}n^2}{n^3+1}$$
 b) $\sum \frac{2|\cos\frac{n\pi}{2}|+(-1)^nn}{\sqrt{(n+1)^3}}$ c) $\sum \frac{1}{n}\sin\frac{n\pi}{2}$

c)
$$\sum \frac{1}{n} \sin \frac{n\pi}{2}$$

Problem 4. Is the series $\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{\log n}$ absolutely convergent? Convergent?

Problem 5. Is it true: "A series is convergent if and only if it is absolutely convergent"? Explain.

Problem 6. Determine for which values of x the following series converge and diverge. [Make sure you don't neglect those values for which the Ratio Test doesn't apply.

a)
$$\sum \frac{x^n}{n!}$$

b)
$$\sum \frac{n}{x^n}$$

c)
$$\sum \frac{(4x)^{3n}}{\sqrt{n+1}}$$

a)
$$\sum \frac{x^n}{n!}$$
 b) $\sum \frac{n}{x^n}$ c) $\sum \frac{(4x)^{3n}}{\sqrt{n+1}}$ d) $\sum (-nx)^n$

Problem 7. Prove that if a non-negative sequence (a_n) tends to a and a>0, then $\sqrt{a_n}\to\sqrt{a}$. Prove this, by first showing that

$$\sqrt{a_n} - \sqrt{a} = \frac{a_n - a}{\sqrt{a_n} + \sqrt{a}}.$$