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Daniel Ueltschi

Due: Monday 7 December, 3:00pm.

Problem 1. Let s =
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Problem 2. Find a sequence (an) which is non-negative and strictly de-
creasing but where

∑
(−1)n+1an is divergent and a sequence (bn) which is

non-negative and null but where
∑

(−1)n+1bn is divergent. In both cases,
give reasons.

Problem 3. Using the Alternating Series Test where appropriate, show
that each of the following series is convergent.
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Problem 4. Is the series
∑∞

n=2
(−1)n+1

logn absolutely convergent? Convergent?

Problem 5. Is it true: “A series is convergent if and only if it is absolutely
convergent”? Explain.

Problem 6. Determine for which values of x the following series converge
and diverge. [Make sure you don’t neglect those values for which the Ratio
Test doesn’t apply.]
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Problem 7. Prove that if a non-negative sequence (an) tends to a and
a > 0, then

√
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√
a. Prove this, by first showing that
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