Assignment 3

Due Monday 25 October 15:00 (in supervisor pigeon hole)

1. Prove that each of the following sequences tends to infinity
 (a) \(a_n = n + 10 \)
 (b) \(a_n = \sqrt{n} + \sin n \)
 (c) \(a_n = 2\sqrt{n} \)

2. Prove that none of the following sequences tends to infinity
 (a) \(a_n = 40 - \frac{1}{n} \)
 (b) \(b_n = \cos(n^2 + 7) \)
 (c) \(c_n = 2^{\sin(n\pi)} \)

3. Prove that a sequence which is bounded above cannot tend to infinity.

4. A sequence is known to be increasing.
 (a) Might it have an upper bound?
 (b) Might it have a lower bound?
 (c) Must it have an upper bound?
 (d) Must it have a lower bound?

5. Prove
 (i) Sum Rule
 (ii) Product Rule
 (iii) Quotient Rule
 for sequences.

6. Find the limit of the sequences defined below
 (a) \(\frac{7n^2 + 8}{3n^2 - 4n} \)
 (b) \(\frac{2^n + 1}{2^n - 1} \)
 (c) \(\frac{(\sqrt{n+3})(\sqrt{n-2})}{4\sqrt{n} - 5n} \)
 (d) \(\frac{1 + 2 + \ldots + n}{n^2 + n} \)