Analysis I Daniel Ueltschi

Assignment 6

Due Monday 15 November 15:00 (in supervisor pigeon hole)

Problem 1. Find sup A and inf A where A is the set defined by

- (a) $A = \{x \in \mathbb{R} : x^4 < 16\}$
- (b) $A = \{x \in \mathbb{R} : x^4 \le 16\}$
- (c) $A = \{x \in \mathbb{Q} : x = \frac{1}{n} + 2^{-n}, n \in \mathbb{N}\}$ (d) $A = \{x \in \mathbb{R} : |x| < 3 \text{ and } x^2 > 2\}$
- (e) $A = \{x = \frac{m}{2^n + 1}, m, n \in \mathbb{N}\}$ (f) $A = \{x \in \mathbb{Q} : 0 < \sqrt{x} < 3\}$

Problem 2. Prove the following theorem, originally due to Cauchy. Suppose that $(a_n) \to a$. Then the sequence (b_n) defined by

$$b_n = \frac{a_1 + a_2 + \dots + a_n}{n}$$

is convergent and $(b_n) \to a$.

Problem 3. Find the limit of the sequence (a_n) defined by

$$a_n = \frac{1 + \sqrt[2]{2} + \sqrt[3]{3} + \dots + \sqrt[n]{n}}{n}.$$

(The result of the previous exercise may help!)

Problem 4. Let (a_n) be a decreasing sequence that is bounded below. Does it necessarily converge? If yes, prove it. If not, give a counter-example.

Problem 5. Consider the sequence defined by

$$a_{n+1} = \frac{c}{a_n} + \frac{a_n}{2}, \qquad a_0 = 2c.$$

Here, c > 0 is a fixed parameter. Show the following:

- (i) (a_n) is bounded below by $\sqrt{2c}$;
- (ii) (a_n) is decreasing;
- (iii) (a_n) is convergent (and find the limit).

We studied the case c=1 in class, and we noticed that the sequence converges very, very fast to its limit $\sqrt{2}$. We actually proved that

$$|a_{n+1} - \sqrt{2}| \le \frac{1}{2^{2^n}}.$$

(iv) State and prove something similar for the sequence with parameter c.

Problem 6. Give an example of a sequence (a_n) which is not convergent, but such that $a_{n+1} - a_n \to 0$.