Assignment 6 — Solutions

Problem 2.

(a) We have

$$\|Tf\|^2 = \int |g(x)|^2 |f(x)|^2 \, dx \leq \sup |g(x)|^2 \|f\|^2,$$

so that \(\|T\| \leq \sup |g(x)| \). It will actually follow from (b) that \(\|T\| = \sup |g(x)| \).

(b) Let us first see that if \(\lambda \not\in \{ g(x) : x \in X \} \), we have \(\lambda \in \rho(T) \). Consider the operator \(S \) defined by

$$Sf(x) = \frac{1}{g(x) - \lambda} f(x).$$

It is bounded since \(\|S\| \leq \sup \frac{1}{|g(x) - \lambda|} < \infty \). One also sees that

$$S(T - \lambda) = (T - \lambda) S = 1.$$

Then \(T - \lambda \) has a bounded inverse, so that \(\lambda \in \rho(T) \).

We prove now that if \(\lambda \in \{ g(x) : x \in X \} \), we have \(\lambda \in \sigma(T) \). Since the spectrum of a bounded operator is closed (Corollary 5.8), and together with the result that we just proved, we obtain that \(\{ g(x) : x \in X \} = \sigma(T) \).

We use the following property. For any bounded operator,

$$\inf_{\|x\|=1} \|(T - \lambda)x\| = 0 \implies \lambda \in \sigma(T).$$

We actually proved in the course (Proposition 5.12) that the two properties above are equivalent for self-adjoint operators. But the implication holds for general bounded operators.

Let \(x_0 \) such that \(g(x_0) = \lambda \), and consider the functions \(f_n \) defined by

$$f_n(x) = \begin{cases} \sqrt{n} & \text{if } |x - x_0| < \frac{1}{2n}, \\ 0 & \text{otherwise.} \end{cases}$$

Then \(\|f_n\| = 1 \), and

$$\|(T - \lambda)f_n\|^2 = n \int_{x_0 - \frac{1}{2n}}^{x_0 + \frac{1}{2n}} |g(x) - \lambda|^2 \, dx \leq \sup_{|x-x_0|<\frac{1}{2n}} |g(x) - \lambda|^2.$$

The latter goes to 0 as \(n \to \infty \) since \(g \) is continuous. Then \(\lambda \in \sigma(T) \).

(c) A trivial example: \(g(x) \equiv 1 \), so that \(T \) is the identity and 1 is the (unique) eigenvalue. More generally, \(\lambda \) is an eigenvalue iff \(g^{-1}(\{\lambda\}) \) has nonzero Lebesgue measure, in which case any function whose support is in \(g^{-1}(\{\lambda\}) \) is an eigenvector.

(d) \(T \) is not compact, unless \(g \equiv 0 \). Suppose that \(|g(x)| > \varepsilon \) for all \(x \) in a neighbourhood of \(x_0 \), and consider the functions \(f_n \) defined above. We show that \((Tf_n) \)
has no converging subsequence. For $m < n$ large enough, we have

$$\|Tf_m - Tf_n\|^2 = \int_{|x| < \frac{1}{2n}} |g(x)|^2(n - m)dx + \int_{\frac{1}{2n} < |x| < \frac{1}{2m}} |g(x)|^2mdx$$

$$> \varepsilon^2 \left[\frac{1}{n}(n - m) + \left(\frac{1}{m} - \frac{1}{n} \right)m \right]$$

$$= (1 - \frac{m}{n})^2 \varepsilon^2.$$

Suppose that (Tf_{n_k}) is a converging subsequence. Then it is Cauchy and $\|Tf_{n_k} - Tf_{n_{k'}}\|$ is as small as we want for k, k' large enough. But the above bound implies that

$$\|Tf_{n_k} - Tf_{n_{k'}}\| > (1 - \frac{n_{k'}}{n_k})2\varepsilon^2,$$

which is not small if $n_{k'} > 2n_k$. Then (Tf_{n_k}) does not converge.