Assignment 3

Due Monday 24 October 15:00 (in supervisor pigeon hole)

1. Prove that each of the following sequences tends to infinity

(a)
$$a_n = n + 10$$

(b)
$$a_n = \sqrt{n} + \sin n$$

(c)
$$a_n = 2^{\sqrt{n}}$$

2. Prove that none of the following sequences tends to infinity

(a)
$$a_n = 40 - \frac{1}{n}$$

(a)
$$a_n = 40 - \frac{1}{n}$$

(b) $b_n = \cos(n^2 + 7)$
(c) $c_n = 2^{\sin(n\pi)}$

(c)
$$c_n = 2^{\sin(n\pi)}$$

3. Prove that a sequence which is bounded above cannot tend to infinity.

4. A sequence is known to be increasing.

5. Suppose that $a_n \to a$ and $b_n \to b$. Prove

(i) The Sum Rule:
$$a_n + b_n \rightarrow a + b$$
.

(ii) The Product Rule:
$$a_n \cdot b_n \to a \cdot b$$

(iii) The Quotient Rule: If
$$b_n \neq 0$$
 and $b \neq 0$, $\frac{a_n}{b_n} \to \frac{a}{b}$.

6. Find the limit of the sequences defined below

(a)
$$\frac{7n^2+8}{4n^2-3n}$$

(b)
$$\frac{2^n+1}{2^n-1}$$

(a)
$$\frac{7n^2+8}{4n^2-3n}$$

(b) $\frac{2^n+1}{2^n-1}$
(c) $\frac{(\sqrt{n}+3)(\sqrt{n}-2)}{4\sqrt{n}-5n}$
(d) $\frac{1+2+..+n}{n^2}$

(d)
$$\frac{1+2+..+n}{n^2}$$