
CHAPTER 6 bis

Distributions

The Dirac “function” has proved extremely useful and convenient to physicists, even
though many a mathematician was truly horrified when the Dirac function was described
to him: a function that is infinity at zero and zero everywhere else. Eventually it was given
a rigorous meaning as a “distribution”. Another advantage of distributions is the avail-
ability of derivatives and this makes them a useful tool in the theory of partial differential
equations. This section introduces the basic concepts and properties.

1. Test functions

Distributions are defined as the linear functionals of a suitable space of test functions.
The suitable space in view of Fourier theory is the Schwartz space1 of smooth functions
with fast decay. Let us start by recalling the definition of this space, which we equip with
a topology.

Definition. The Schwartz space S(Rd) of test functions is the linear space of all
functions φ in C∞(Rd) that satisfy

sup
x∈Rd

|x|k
∣∣∣ ∂α
∂xα

φ(x)
∣∣∣ <∞

for any k ∈ N and any multi-index α = (α1, . . . , αd). The sequence (φn) converges to φ iff

sup
x∈Rd

|x|k
∣∣∣ ∂α
∂xα

(
φn(x)− φ(x)

)∣∣∣ −→ 0

as n→∞, for any k ∈ N and any multi-index α.

Convergence in the sense of test functions is a very strong property. One can check
that the topology induced by the seminorms above turns S(Rd) into a Fréchet space,
i.e., a complete metrizable locally convex space (a vector space is locally convex when it
is equipped with a family a seminorms that separate points). Whoever is not familiar
with analytic technicalities can safely ignore this remark; what matters is the definition
of convergence of a sequence of test functions.

1The French mathematician Laurent Schwartz (1915–2002) created the theory of distributions in 1950–
51.
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2. Distributions: Definition and examples

Definition. A distribution is a continuous linear functional on S(Rd).

These distributions are often called “tempered” and they are not the only ones. The
most common space is the dual of the smooth functions with compact support. This space
of test functions is smaller, so the dual space is bigger, which is definitely an advantage.
On the other hand, the Fourier transform can only be defined for tempered distributions,
this is the reason why we restrict our attention to those.

Let S ′ denote the space of distributions, i.e., the dual space of S(Rd). This is a linear
space, and we consider the weak-* topology (pointwise convergence with respect to test
functions). That is, the sequence of distributions (Tn) converges to the distribution T
whenever

Tn(φ) −→ T (φ)
for any test function φ.

The simplest examples of distributions are locally integrable functions that do not
grow too fast: For such a function f , the corresponding distribution Tf is defined by

Tf (φ) =
∫

Rn
f(x)φ(x) dx.

It is clearly linear and continuous. In order for the integrals above to exist for all φ ∈ S,
we must assume the existence of a number k such that

∫
|f(x)|(1 + |x|)−kdx <∞. Many

regular measures µ on Rd (with the Borel σ-algebra) give rise to a distribution Tµ, with
Tµ(φ) =

∫
φ(x)dµ(x). Again, these integrals exist provided µ does not put too much mass

for large |x|. Most distributions are not functions, however. Let us review three important
examples.

(i) For x0 ∈ Rd and α a multi-index, let

T (φ) =
∂α

∂xα
φ(x0).

The special case α = 0 is Dirac’s “function”,2 which is really a distribution.
Linearity and continuity are easily verified.

(ii) In d = 1, Cauchy’s principal value of 1/x, denoted PV 1
x , is defined by

PV 1
x(φ) = lim

ε↘0

∫
|x|>ε

1
xφ(x) dx.

Notice that limε↘0

∫∞
ε

1
xφ(x) dx is ±∞ if φ(0) 6= 0. However, this divergence

cancels with the divergence of the integral for negative x. This can be seen by
writing∫

|x|>ε

1
xφ(x) dx =

∫
|x|>1

1
xφ(x) dx+

∫
ε<|x|<1

1
x [φ(x)− φ(0)]dx+

∫
ε<|x|<1

1
xφ(0) dx.

The first integral exists because φ(x) decays quickly at infinity. The integrand
of the second integral is bounded by sup |φ′(x)| by the mean-value theorem, so
that the integral converges uniformly in ε. Finally, the third integral is zero by

2Paul Adrien Maurice Dirac (1902–1984) was a British mathematical physicist who made important
contributions in quantum mechanics.
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symmetry. This shows that the principal value of 1/x is well defined. This is
clearly a linear functional. The above decomposition can also be used to prove
that PV 1

x(φn) → 0 for any sequence of test functions (φn) that converges to 0,
so this functional is continuous.

(iii) Again in d = 1, the distribution 1
x+i0 is defined by

1
x+i0(φ) = lim

ε↘0

∫ ∞
−∞

φ(x)
x+ iε

dx; .

Convergence of the limit ε→ 0 can be proved in about the same way as for PV 1
x .

These three distributions are actually related by the identity (Exercise 5).

1
x+i0 = PV 1

x − iπδ0.

3. Weak or distributional derivatives

A major advantage of distributions is to generalise the notion of derivatives in a very
natural way. Indeed, it is intuitively clear that the derivative of |x| should be sgn(x),
although the usual definition does not apply. Here, the infinite differentiability of test
functions is essential.

Definition. Let α = (α1, . . . , αn) a multi-index. The distributional derivative or
weak derivative of a distribution T is defined by(

∂αT
)
(φ) = (−1)α T

( ∂α
∂xα

φ
)
.

Here, (−1)α = (−1)α1+···+αd.

In particular, in d = 1, T ′(φ) = −T (φ′). Let us see that this definition is indeed
an extension of the usual definition of the derivative of a function. If f is a differentiable
function and Tf is the corresponding distribution, we have This follows from the definition
and an integration by parts:

T ′f (φ) = −Tf (φ′) = −
∫ ∞
−∞

f(x)φ′(x) dx =
∫ ∞
−∞

f ′(x)φ(x) dx = Tf ′(φ).

It follows that T ′f = Tf ′ . This computation also clarifies the sign that appears in the
definition of the distributional derivative.

Let us illustrate this notion in three situations where the original definition of derivative
does not apply.

(a) The distributional derivative of |x| is sgn(x):

T ′|x|(φ) = −
∫ ∞
−∞
|x|φ′(x) dx = −

∫ 0

−∞
φ(x) dx+

∫ ∞
0

φ(x) dx = Tsgn(x)(φ).
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(b) The distributional derivative of the Heaviside step function3 is the Dirac distri-
bution. Let H(x) = 1 if x > 0, H(x) = 0 if x < 0. Then

T ′H(φ) = −TH(φ′) = −
∫ ∞

0
φ′(x) dx = −φ(x)

∣∣∣∞
0

= φ(0).

(c) The distributional derivative of the Dirac distribution, noted δ′x, is easily found:

δ′x(φ) = −δx(φ′) = −φ′(x).

Lemma 1. The map T 7→ ∂αT is continuous.

Proof. If Tn → T , then ∂αTn(φ) = (−1)αTn( ∂α

∂xα
φ) → (−1)αT ( ∂α

∂xα
φ) =

∂αT (φ). �

4. Fourier transforms of distributions

We now extend the notion of Fourier transform to distributions. We saw before how to
define derivatives of distributions, that coincide with the usual definition when the distri-
bution is a differentiable function. The situation is similar with the Fourier transform. It
applies to any distribution, and coincides with the definitions above when the distribution
is an L1 function.

We first need to understand what should be the definition of the Fourier transform of a
distribution. If f ∈ L1(R), the Fourier transform of Tf should be T̂f = T bf . Consequently,

T̂f (φ) = T bf (φ) =
∫ ∞
−∞

f̂(k)φ(k) dk =
∫ ∞
−∞

[∫ ∞
−∞

e−2πikx f(x) dx
]
φ(k) dk

=
∫ ∞
−∞

[∫ ∞
−∞

e−2πikx φ(k) dk
]
f(x) dk =

∫ ∞
−∞

f(x)φ̂(x) dx = Tf (φ̂).

The interchange of integrals is justified by Fubini theorem (check it!). This shows that for
any distribution that is given by an L1 function, we should have

T̂f (φ) = Tf (φ̂).

The idea for general distributions is to use this property as a definition. But this works
only if the Fourier transform of a test function is a test function, and this is the main
reason behind using Schwartz functions as test functions.

Definition. The Fourier transform of the distribution T ∈ S ′ is the distribution
T̂ ∈ S ′ that satisfies

T̂ (φ) = T (φ̂)

for any φ ∈ S(Rd).

3Oliver Heaviside (1850–1925), a British who had strong opinion about the Euclidean geometry taught
in school: “It is shocking that young people should be addling their brains over mere logical subtleties,
trying to understand the proof of one obvious fact in terms of something equally... obvious.” A great
applied mathematician nonetheless!
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The functional T̂ defined above is obviously linear, since T and the Fourier transform
are linear. Is it continuous? If φn → φ in the sense of test functions, we can check that
φ̂n → φ̂ (also in the sense of test functions), see Exercise 10, and therefore

T̂ (φn) = T (φ̂n) −→ T (φ̂) = T̂ (φ).

Then T̂ is continuous indeed.
The definition above allows to take the Fourier transform of any distribution. In

particular, any locally integrable function (which does not diverge too quickly at infinity)
has now a Fourier transform, not only L1 and L2 functions. It may be, however, that the
Fourier transform of a non-L1 or non-L2 function is a distribution that is not a function.

Lemma 2. The map T 7→ T̂ is continuous.

Proof. If Tn → T , then bTn(φ) = Tn(bφ)→ T (bφ) = bT (φ). �

This lemma is useful; it sometimes easier to compute the Fourier transform of an
approximating sequence and to take the limit. In Exercise 3, this is done with the function
1
|x| in dimension d = 3.

It turns out that the Fourier transform is a bijection on the space of distributions. In
order to define the inverse transform, let

φ∨(k) =
∫

Rd
e2πikx φ(x) dx.

Proposition 3.

(a) The map T 7→ T̂ is a bijection S ′ → S ′.
(b) The inverse map is T 7→ T∨, where T∨(φ) = T (φ∨).

Proof. The maps b· and ·∨ are both defined on the whole of S ′. We havebT∨(φ) = bT (φ∨) = T (cφ∨) = T (φ).

Then T = bT∨, and a similar argument leads to T = cT∨. This implies that the mapsb· and ·∨ are both onto. If T (φ) = 0 for all φ, then bT = 0 and bT∨ = 0, so T = 0 and
the map b· is one-to-one. �

We have already seen the effect of the Fourier transform on functions of the type xf
and f ′. The distributional Fourier transform is similar. We denote xαT (or kαT ) the
distribution such that (xαT )(φ) = T (xαφ). It is well defined since xαφ ∈ S(Rd).

Proposition 4.

(a) ∂αT̂ = (−2πi)α x̂αT .
(b) ∂̂αT = (2πi k)α T̂ .
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Proof. For item (a),

(∂α bT )(φ) = (−1)α bT (∂αφ) = (−1)αT ( d∂αφ) = (−1)αT ((2πi k)αbφ)

= (−2πi)α(xαT )(bφ) = (−2πi)α dxαT (φ).

Item (b) is similar:

(̂∂αT )(φ) = ∂αT (bφ) = (−1)αT (∂αbφ) = (−1)αT ((−2πi)α dxαφ)

= (2πi)α bT (xαφ) = (2πi k)α bT (φ).

�

5. The Poisson equation

The Poisson equation4 is a differential equation in three dimensions for the gravitational
potential or the Coulomb potential. The equation is

−∆u = f,

where ∆ denotes the Laplacian,

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

.

The function u is the Coulomb potential if f is the distribution of charge; u is the negative
of the gravitational potential if f is the distribution of mass.

We suppose here that f ∈ S(R3), which simplifies the study. We first search for a
solution using formal calculations. The Fourier transform of the equation is

4π2|k|2û(k) = f̂(k).

We find û(k) = 1
4π2|k|2 f̂(k). The inverse Fourier transform of 1

4π2|k|2 is 1
4π|x| (see Exercise

3), which suggests that

u(x) =
( 1

4π|x|
∗ f
)

(x) =
∫

1
4π|x− y|

f(y)dy =
∫

1
4π|y|

f(x− y)dy. (♦)

For f ∈ S(R3), these integrals are well-defined for all x and u is C∞. The goal is to show
that for any Schwartz function f ,

f(x) = −∆u(x) =
∫ (
−∆ 1

4π|x−y|
)
f(y)dy =

∫ (
−∆ 1

4π|y|
)
f(x− y)dy.

This suggests that the Laplacian of 1/|x| is proportional to a Dirac distribution. We now
establish this rigorously.

Lemma 5. Let T be the distribution associated with 1
4π|x| . Then

−∆T = δ0.

4Siméon-Denis Poisson (1781–1840) was a French whose innovative works in applied mathematics and
in mathematical physics include potential theory in electromagnetism, for which the “Poisson equation”
plays an important rôle. According to Poisson lLife is good for only two things, discovering mathematics
and teaching mathematics!
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The function 1
4π|x| is called the “Green function”5 of the Poisson equation.

Proof. By Proposition 3, two distributions are equal iff their Fourier transforms
are equal. We have

−̂∆T = 4π2|k|2 bT = 4π2|k|2T 1
4π2|k|2

= T1 = bδ0.
�

Given φ ∈ S(R3), let φx denote the function φx(y) = φ(x − y). Clearly, the map
φ 7→ φx is a bijection S → S. The function u in (♦) can be written as

u(x) = T (fx).

Furthermore, we have

−∆u(x) = −
∫

1
4π|y|

(∆f)(x− y)dy = −T (∆fx).

We used the relation ∆f(x − y) = ∆fx(y). By the definition of weak derivatives and
Lemma 5, we have

T (∆fx) = ∆T (fx) = δ0(fx) = fx(0) = f(x).

We have just proved that −∆u(x) = f(x).

Exercise 1. Let d = 1. Show that the Fourier transform of 1
x2+µ2 is π

µ e−2πµ|k| (use
contour methods).

Exercise 2. Let d = 1. Show that the Fourier transform of e−2πµ|x| is µ
π

1
k2+µ2 .

Exercise 3. Let d = 3.
(a) Show that the Fourier transform of 1

|x| e
−2πµ|x| is 1

π
1

k2+µ2 .
(b) Find the Fourier transform of the function 1/|x|. Since this function is not in any

Lp space, explain the meaning of the Fourier transform.

Exercise 4. In d = 1, describe the distribution xk∂`δ0 for every integers k, ` > 0.

Exercise 5. Prove that 1
x+i0 = PV 1

x − iπδ0. Hint: use 1
x+iε = x

x2+ε2
− iε

x2+ε2
.

Exercise 6. “When differentiating a function with a jump, one picks up a delta
multiplied by the height of the jump.” Rewrite this sentence in mathematical language.
Prove it!

Exercise 7. Compute rigorously the Fourier transforms of
(a) δx0 .
(b) x.
(c) xδ0.

5The English George Green (1793–1841) was too modest and even he did not understand the impor-
tance of his 1828 essay on the mathematical analysis of electricity and magnetism. Much later, this essay
would be read by Lord Kelvin, who shared his excitement with Liouville and Sturm.
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Exercise 8. Compute rigorously the Fourier transform of 1
x+i0 . Hint: Obtain the

following expression:

1̂
x+i0(φ) = lim

ε↘0
lim
R→∞

∫ R

−R

1
x+iε

[∫ ∞
−∞

e−2πikx φ(k) dk
]
dx.

Then use Fubini and contour methods.

Exercise 9. Find the Fourier transform of PV 1
x . You may use the results of Exercises

5 and 8 if useful.

Exercise 10. Show that φn → φ implies φ̂n → φ̂, where convergence is in the sense
of the Schwartz space.

References and further reading

Gerald B. Folland, Real Analysis, Wiley, 1999.
J. K. Hunter and Bruno Nachtergaele, Applied Analysis, World Scientific, 2001.
Elliott H. Lieb and Michael Loss, Analysis, AMS, 2001.
Michael Reed and Barry Simon, Functional Analysis, Elsevier, 1980
MacTutor History of Mathematics, http://www-history.mcs.st-andrews.ac.uk/history/


