Assignment 2

1. Prove that the Fejér kernel “converges to Dirac”. Precisely, show that
 \[F_n(t) = \frac{1}{n} \frac{\sin^2(n\pi t)}{\sin^2(\pi t)} \]
 satisfies

 (a) \(F_n(t) \geq 0 \). (Obvious!)

 (b) \(\int_{-\frac{1}{2}}^{\frac{1}{2}} F_n(t) \, dt = 1 \).

 (c) \(\lim_{n \to \infty} \int_{|t|>\delta} F_n(t) \, dt = 0 \) for any \(\delta > 0 \).

2. Properties of convolution. Suppose that \(f, g, h \in L^1([0,1]) \). Prove the following facts:

 (a) \(f \ast (g + h) = f \ast g + f \ast h \).

 (b) \((cf) \ast g = c(f \ast g) = f \ast (cg) \) for any \(c \in \mathbb{C} \).

 (c) \(f \ast g = g \ast f \).

 (d) \((f \ast g) \ast h = f \ast (g \ast h) \).

 (e) \(f \ast g \) is continuous.

 (f) \(\hat{f} \ast g(k) = \hat{f}(k) \hat{g}(k) \).

3. Abel summability. Let \(f \in L^1([0,1]) \), and with \(r \in (0,1) \), define
 \[A_r f(x) = \sum_{k \in \mathbb{Z}} r^{|k|} \hat{f}(k) e^{2\pi i kx} \].

 (a) Prove that this series converges absolutely for all \(x \in [0,1] \), and that
 \(A_r f(x) \) is a continuous function of \(x \).

 (b) Let \(P_r \) be the Poisson kernel such that \(A_r f = P_r \ast f \). Show that
 \[P_r(x) = \sum_{k \in \mathbb{Z}} r^{|k|} e^{2\pi i kx} = \frac{1 - r^2}{1 - 2r \cos(2\pi x) + r^2} \].
(c) Prove that if \(f \in L^p([0,1]), 1 \leq p < \infty \), we have \(\lim_{r \to 1} \| A_r f - f \|_p = 0 \). (This should be similar to the proof of Theorem 3.2 (a).) What about \(p = \infty \)?

4. Show that the Fourier series of a periodic differentiable function \(f \in C^1(T) \) is absolutely convergent. (Hint: Use the Cauchy-Schwarz inequality and Parseval formula for \(f' \).)

5. Let \(f \in C^\alpha(T) \), with \(\alpha \in \mathbb{N} \). Show that \(\hat{f}(k) = o(1/|k|^\alpha) \).