Assignment 4

1. Truncating $L^p(\mathbb{R}^d)$ functions.
 - Let $f \in L^2(\mathbb{R}^d)$, and define $f_n(x) = f(x) \chi_{\|x\|<n}$. Show that $f_n \in L^1(\mathbb{R}^d)$ and that
 \[
 \lim_{n \to \infty} \|f_n - f\|_2 = 0.
 \]
 - Let $f \in L^p(\mathbb{R}^d)$ with $1 \leq p \leq 2$. Let $f_1(x) = f(x) \chi_{|f|\geq 1}(x)$ and $f_2(x) = f(x) \chi_{|f|<1}(x)$. Show that $f_1 \in L^1$ and $f_2 \in L^2$.

2. Consistency of the definition of the L^2 Fourier transform.
 - Suppose that (f_n) and (g_n) are sequences in $L^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)$ that both converge to $f \in L^2$. Define \hat{f}_n, \hat{g}_n using the L^1 transform. Show that (\hat{f}_n) and (\hat{g}_n) converge to the same limit. (This limit is \hat{f} by definition).
 - Extend Plancherel’s identity from functions in $L^1 \cap L^2$, to any function in L^2.

3. Show that the Hermite functions,
 \[h_n(x) = \frac{(-1)^n}{n!} e^{-\pi x^2} \frac{d^n}{dx^n} e^{-2\pi x^2}, \]
 are eigenvectors of the $L^2(\mathbb{R})$ Fourier transform.
 Hint: Compute the generating function
 \[\sum_{n \geq 0} t^n h_n(x). \]
 This gives a Gaussian, and one can get its Fourier transform. Equating the powers of t, one should obtain the result.

4. Show that the Hausdorff-Young inequality is false for $p > 2$.
 Hint: Extend Proposition 4.1 (Fourier transform of a Gaussian) to Gaussians with complex parameters λ such that $\text{Re} \lambda > 0$. Then consider the Gaussian g_{λ} with $\lambda = (a + ib)^{-1}$, $a > 0$, and show that $\|g_{\lambda}\|_p \sim |b|^{1/2}$ and $\|\hat{g}_{\lambda}\|_q \sim |b|^{1/q}$ as $|b| \to \infty$.
