The inverse Fourier transform \(\hat{F}' \) of \(F \in L^1 \) is
\[
\hat{F}'(\omega) = \frac{1}{(2\pi)^d} \int e^{i\omega \cdot \xi} f(\xi) \, d\xi.
\]
If \(F, \hat{F} \) both belong to \(L^1 \), we have \(F = (\hat{F}')' = \hat{F}'' \). Further, we have Plancherel theorem:
\[
\|F\|_2 = \frac{1}{(2\pi)^d} \|\hat{F}\|_2.
\]
(Unless specified otherwise, \(\| \cdot \|_2 \) denotes the \(L^2 \)-norm.) The theorem also applies to the inner product:
\[
(F, g) = \frac{1}{(2\pi)^d} (\hat{F}, \hat{g}).
\]
Recall that the Fourier transform of \(L^1 \) functions, defined above, can be extended to all \(L^2 \) functions by \(\ell^2 \)-continuity. Indeed, let \(F : L^1 \to L^2 \) denote the map \(F \mapsto \hat{F} \). It is defined on a dense set of functions in \(L^2 \) by the integral above. It is linear, and \(\|F\| = (2\pi)^d \|\hat{F}\|_2 \leq \infty \) so \(F \) is continuous and it can be extended to \(L^1 \) by \(L^2 \). The inverse map \(F^{-1} \) exists for the same reason.

Definition 1. A function \(f \in C_c^\infty (\mathbb{R}^d) \) is Schwartz if \(\forall k \in \mathbb{N}^d \), \(\forall \lambda \in \mathbb{N} \), we have
\[
\sup_{x \in \mathbb{R}^d} \|x^k \partial_x^\lambda f(x)\| < \infty.
\]

The Fourier transform plays a central role in quantum mechanics.

Definition 2. The Fourier transform \(\hat{f} \) of \(f \in L^1(\mathbb{R}^d) \) is
\[
\hat{f}(k) = \int e^{i\omega \cdot x} f(x) \, dx.
\]
If this function exists, it is unique.

Definition 4. The Sobolev space $H^s = H^s(\mathbb{R}^d)$ is the space of all $f \in L^2$ such that $\frac{df}{dx}$ exists and belongs to L^2, for all $j=1, \ldots, d$. It is a Hilbert space with the Sobolev inner product

$$\langle f, g \rangle_{H^s} = \langle f, g \rangle_{L^2} + \sum_{j=1}^{d} \left(\frac{df}{dx} \cdot \frac{d^j g}{dx^j} \right)_{L^2} = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} \left(1 + |x|^2 \right)^{s/2} \overline{f(x)}g(x) \, dx.$$

II. Operator theory

We review essential notions about operators in infinite-dimensional Hilbert spaces. The Laplacian is an interesting and useful example. The main complication of unbounded operators is that they are only defined on a subspace of the Hilbert space.

Definition 5. A densely-defined operator on H is a pair $(T, D(T))$ where the domain $D(T)$ is a dense linear subspace of H, and T is a linear map $D(T) \to H$.

For example, $H = L^2(\mathbb{R}^d)$, $T = \Delta = \sum_{j=1}^{d} \frac{d^2}{dx_j^2}$, and $D(T) = C_c^\infty(\mathbb{R}^d)$ (the Schwartz space), or $D(T) = L^2 \cap C^2$, ... Exercise: check that Δ is unbounded.

Any operator T has an adjoint T^*. In words, T^* is an operator $D(T^*) \to H$ such that $(T^*f, g) = (f, Tg)$ for all $f \in D(T)$ and $g \in D(T^*)$, and the domain of T^* is the largest possible. Notice that $D(T^*)$ is not necessarily dense.

Definition 6. Let $T: D(T) \to H$, where $D(T)$ is closed in H. The domain of the adjoint is

$$D(T^*) = \left\{ f \in H : \exists g \in D(T) \text{ such that } (T^*f, g) = (f, Tg) \text{ for all } g \in D(T) \right\}.$$

If such g exists, it is unique because $D(T)$ is dense. Then the adjoint is the operator T^* that assigns $T^*f = g$ to each $f \in D(T^*)$.

In the case where T is bounded, Riesz representation theorem implies that $D(T^*) = H$. And if $\dim H < \infty$, the adjoint of a matrix is the hermitian conjugate.

Definition 7. An operator $T: D(T) \to H$ is symmetric if $(Tf, g) = (f, Tg)$ for all $f, g \in D(T)$.

An operator $T: D(T) \to H$ is self-adjoint if $T^* = T$.

One can check that T is symmetric if T^* is an extension of T, i.e., if $D(T^*) \supset D(T)$ and $T^*f = Tf$ for all $f \in D(T)$.

-8-