
CHAPTER 3

Mathematical setting

1. Tensor products (of Hilbert spaces)

Let H be a separable Hilbert space and {ei}i�1 be a finite or countable orthonor-
mal basis. Recall that span{ei} denotes the space of finite linear combinations of
{ei}, and that its completion is isomorphic to H.

Definition 3.1 (Tensor product). Let H1,H2 be two Hilbert spaces with respec-
tive bases {e1i }, {e2i }. The tensor product of H1 and H2, denoted H1 ⌦H2, is the
completion of the linear span of {(e1i , e2j )}i,j�1.

The dimension of the tensor product space satisfies

dimH1 ⌦H2 = dimH1 · dimH2. (3.1)

Given two vectors '1 2 H1 and '2 2 H2, we can construct the element '1 ⌦ '2 as
follows. Let

P
i aie

1
i and

P
j bje

2
j be the decompositions of '1,'2 in the bases {e1i }

and {e2j , respectively. Then

'1 ⌦ '2 =
X

i,j�1

aibje
1
i ⌦ e2j . (3.2)

Notice that '1 ⌦ 2'2 = 2'1 ⌦'2 = 2('1 ⌦'2). Not all elements of H1 ⌦H2 can be
written as tensor product vectors (see Exercise 3.3).

The inner product on H1 ⌦H2 is

h'1 ⌦ '2, 1 ⌦  2i = h'1, 1i · h'2, 2i, (3.3)

where the inner products in the right side are in H1 and H2, respectively. This
extends to general elements of H1 ⌦H2 by linearity.

Let A1 2 B(H1) and A2 2 B(H2) be two bounded operators. The tensor product
operator A1⌦A2 is an operator acting on H1⌦H2 and its action on tensor product
vectors is

(A1 ⌦A2)('1 ⌦ '2) = A1'1 ⌦A2'2. (3.4)

Its action on general vectors is obtained by linearity.
This construction is easily generalised to more than two Hilbert spaces. The ten-

sor product spaceH1⌦· · ·⌦Hn is the completion of the linear span of {(e1j1 , . . . , enjn)}j1,...,jn�1,

where {eij}j�1 is an orthonormal basis of Hi.
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2 3. MATHEMATICAL SETTING

2. Direct sums

Definition 3.2. The direct sum of two Hilbert spaces H1 and H2, denoted
H1 �H2, is the space of pairs ('1,'2) with '1 2 H1, '2 2 H2, with operations

↵('1,'2) + �( 1, 2) = (↵'1 + � 1,↵'2 + � 2), ↵,� 2 C.

If {e1i } and {e2j} are bases of H1 and H2, then {(e1i , 0)} [ {(0, e2j )} is a basis of
H1 �H2. It follows that

dimH1 �H2 = dimH1 + dimH2. (3.5)

3. Spin operators

Let S 2 1
2N. On C2S+1, let S1, S2, S3 be hermitian matrices that satisfy the

following properties:

[S1, S2] = iS3, [S2, S3] = iS1, [S3, S1] = iS2, (3.6)

[S1]2 + [S2]2 + [S3]2 = S(S + 1)Id. (3.7)

The existence of such matrices follows by construction: Let |ai, a 2 {�S,�S +
1, . . . , S} denote an orthonormal basis of C2S+1, and define S3|ai = a|ai. Next, let
S+, S� be defined by

S+|ai =
p
S(S + 1)� a(a+ 1) |a+ 1i, S�|ai =

p
S(S + 1)� (a� 1)a |a� 1i.

(3.8)

Then we set S1 = 1
2(S

+ + S�) and S2 = 1
2i(S

+ � S�).

Lemma 3.1. The operators S1, S2, S3 constructed above satisfy the rela-
tions (3.6) and (3.7).

Proof. One can check the following commutation relations:

[S3, S+] = S+, [S3, S�] = �S�, [S+, S�] = 2S3. (3.9)

The relations (3.6) follow. Finally,

[S1]2 + [S2]2 + [S3]2 = S+S� + [S3]2 � S3 = S(S + 1)Id. (3.10)

⇤
For S = 1

2 , the choice above gives the Pauli matrices

S1 = 1
2

✓
0 1
1 0

◆
, S2 = 1

2

✓
0 �i
i 0

◆
, S3 = 1

2

✓
1 0
0 �1

◆
. (3.11)

For S = 1, we get

S1 =
1p
2

0

@
0 1 0
1 0 1
0 1 0

1

A , S2 =
1p
2

0

@
0 �i 0
i 0 �i
0 i 0

1

A , S3 =

0

@
1 0 0
0 0 0
0 0 �1

1

A .

(3.12)

Notice that, for S > 1, the matrix of S1 is not proportional to �|i�j|,1. Spin oper-
ators are not unique, but their spectrum is uniquely determined by the commutation
relations.
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Lemma 3.2. Assume that S1, S2, S3 are hermitian matrices in C2S+1

that satisfy the relations (3.6) and (3.7). Then each Si has eigenvalues
{�S,�S + 1, . . . , S}.

Proof. It is enough to prove the claim for S3. Define S+ = S1 + iS2 and
S� = S1 � iS2. One can check that

S+S� = S(S + 1)Id� [S3]2 + S3,

S�S+ = S(S + 1)Id� [S3]2 � S3.
(3.13)

Let |ai be an eigenvector of S3 with eigenvalue a. It follows from Eq. (3.13) that
��S+|ai��2 = ha|S�S+|ai = S(S + 1)� a2 � a � 0,
��S�|ai��2 = ha|S+S�|ai = S(S + 1)� a2 + a � 0.

(3.14)

Then |a|  S, and S+|ai 6= 0 if a 6= S. Next, observe that [S3, S+] = S+. Then

S3S+|ai = (a+ 1)S+|ai. (3.15)

Then if a 6= S is an eigenvalue, a+1 is also an eigenvalue. There are similar relations
with S�, so that if a 6= �S is an eigenvalue, a � 1 is also an eigenvalue. It follows
that {�S,�S + 1, . . . S} is the set of eigenvalues. ⇤

Notice that the relations (3.8) always hold; this follows from (3.15) and (3.14).
It follows from the parallelogram identity that kS±k =

p
2S:

kS+k2 = 1
4(2kS+k2 + 2kS�k2) = 1

4(kS+ + S�k2 + kS+ � S�k2)
= 1

4(4kS1k2 + 4kS2k2) = 2S2.
(3.16)

Spin operators are related to rotations in R3. Let ~S = (S1, S2, S3). Given
~a 2 R3, let

S~a = ~a · ~S = a1S
1 + a2S

2 + a3S
3. (3.17)

By linearity, the commutation relations (3.6) generalize as

[S~a, S
~b] = iS~a⇥~b. (3.18)

Finally, let R~a
~b denote the vector ~b rotated around ~a by the angle k~ak.

Lemma 3.3.
e�iS~a

S
~b eiS

~a

= SR
~a

~b.

Proof. We replace ~a by s~a, and we check that both sides of the identity satisfy
the same di↵erential equation. We find

d

ds
e�iSs~a

S
~b eiS

s~a

= �i[S~a, e�iSs~a

S
~b eiS

s~a

], (3.19)

and
d

ds
SR

s~a

~b =
⇣ d

ds
Rs~a

~b
⌘
· ~S =

⇣
~a⇥Rs~a

~b
⌘
· ~S = �i[S~a, SR

s~a

~b]. (3.20)

We used (3.18) for the last identity. ⇤
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It also follows from Lemmas 3.2 and 3.3 that any matrix S~a, ~a 2 R3 with k~ak = 1,
has eigenvalues {�S,�S + 1, . . . , S}.

Corollary 3.4. Let  ~b,c be the eigenvector of S
~b with eigenvalue c.

Then e�iS~a

 ~b,c is eigenvector of SR
~a

~b with eigenvalue c.

Proof. Using Lemma 3.3,

SR
~a

~b e�iS~a

 ~b,c = e�iS~a

S
~b ~b,c = c e�iS~a

 ~b,c. (3.21)

⇤
Finally, let us note the following useful relations:

e�iaS3
S+ eiaS

3
= e�ia S+,

e�iaS3
S� eiaS

3
= eia S�.

(3.22)

Exercise 3.1. For S = 1, check that the following matrices satisfy the spin
relations.

S1 =

0

@
0 0 0
0 0 �i
0 i 0

1

A , S2 =

0

@
0 0 �i
0 0 0
i 0 0

1

A , S3 =

0

@
0 �i 0
i 0 0
0 0 0

1

A .

Exercise 3.2. For S = 1, check that the following matrices do not satisfy the
spin relations.

S1 = 1
2

0

@
0 1 0
1 0 0
0 0 0

1

A , S2 = 1
2

0

@
0 �i 0
i 0 0
0 0 0

1

A , S3 = 1
2

0

@
1 0 0
0 �1 0
0 0 0

1

A .

Exercise 3.3. Show that there exist no '1 2 H1, '2 2 H2 such that

e11 ⌦ e21 + e12 ⌦ e22 = '1 ⌦ '2.

Exercise 3.4. Show that

(a) k'1 ⌦ '2k = k'1k · k'2k for all '1 2 H1, '2 2 H2.
(b) kA1 ⌦A2k = kA1k · kA2k for all A1 2 B(H1), A2 2 B(H2).

Exercise 3.5. Show that

H� · · ·�H| {z }
n times

' H⌦ Cn.



CHAPTER 4

Models of quantum spins

1. Origin and motivation

The electron is a particle that possesses a mass m, a charge �e, and also a
spin. In quantum mechanics, the state space for an electron in domain ⌦ is the
Hilbert space H1 = L2(⌦)⌦C2. The description of an atom with Z protons and N
electrons turns out to be very complicated (except for N = 1). The Hilbert space is
the antisymmetric subspace of H⌦N

1 and the Hamiltonian is the operator

H = � ~2
2m

NX

i=1

�i � Ze2
NX

i=1

1

kXik + e2
X

1i<jN

1

kXi �Xjk . (4.1)

Here, �i is the Laplacian for the ith particle, that is

�i =
⇣
1lL2(⌦) ⌦ 1lC2

⌘
⌦ · · ·⌦

⇣
�L2(⌦) ⌦ 1lC2

⌘
⌦ · · ·⌦

⇣
1lL2(⌦) ⌦ 1lC2

⌘
. (4.2)

The position operator of the ith particle, Xi = (X1
i , X

2
i , X

3
i ), is defined similarly. We

assumed that the nucleus is located at the origin. A system of condensed matter is
even more complicated, as it consists of many atoms and many electrons. Evidence
shows that, in many cases, atoms arrange themselves in periodic lattices. This is ill-
understood but we accept it, so we assume that the positions of the atoms are given
by the vertices of a regular lattice. Here, “lattice” means a graph with a periodic
structure.

Our goal is to understand the behaviour of the electrons, that is, to understand
the electronic properties of the system. The evolution of the system is formidably
complex. However, a large system at equilibrium is described by statistical mechan-
ics. The expectation of the observable A is given by

hAi = TrA e��H

Tr e��H
. (4.3)

Here, � is a parameter that is equal to the inverse temperature of the system. This
linear functional is called a finite-volume Gibbs state. Its justification is physically
and mathematically delicate, but we accept it.

Eq. (4.3) is still intractable and we are led to the notion of models. Models are
grossly simplified systems that nevertheless capture several relevant mechanisms at
work in the original systems. The main approach of theoretical condensed matter
physics consists in introducing interesting models, to work out their properties, and
to link them with actual physical systems.
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6 4. MODELS OF QUANTUM SPINS

2. Models of quantum spin systems

We obtain an important class of models by assuming that only one electron
per atom is relevant, and by restricting our attention to its spin. We assume that
the total Hamiltonian is the sum of two-body interactions. If S = 1

2 and if we
also assume that the interaction is rotation invariant, it necessarily is of the form
±~Sx · ~Sy. We actually consider the following more general class of models.

Let ⇤ be the (finite) set of vertices. The Hilbert space is

H⇤ = ⌦x2⇤C2S+1, (4.4)

where S 2 1
2N is a fixed parameter. The Hamiltonian is

H⇤ = �1
2

X

x,y2⇤

⇣
J1
xyS

1
xS

1
y + J2

xyS
2
xS

2
y + J3

xyS
3
xS

3
y

⌘
. (4.5)

Here, J i
xy = J i

yx are real parameters. The spin operator Si
x is equal to

Si
x = Si ⌦ 1l⇤\{x} (4.6)

where 1l⇤\{x} is the identity in ⌦y2⇤\{x}C2S+1.

It is natural to choose ⇤ to be a box in Zd and to set J i
xy = 0 unless x, y are

nearest-neighbours. Several famous models belong to the general class:

• The case J3
xy = J for all neighbours x, y, and J i

xy = 0 for i = 1, 2 or x, y
not neighbours. This is the Ising model, invented by Lenz in 1920. All
relevant operators commute with one another and the quantum setting is
superfluous.

• The case J1
xy = J2

xy = J for all neighbours x, y, and J i
xy = 0 for i = 3 or

x, y not neighbours. This model is known as the quantum XY model, or
model of quantum rotators.

• The case J1
xy = J2

xy = J3
xy = J for all neighbours x, y, and J i

xy = 0 for x, y
not neighbours. This is the ferromagnetic Heisenberg model when J > 0
and the antiferromagnetic Heisenberg model when J < 0.

3. System of two spins

Systems of two spins are relevant for interaction operators. The Hilbert space is
C2S+1 ⌦ C2S+1, and the spin operators are Si

1 = Si ⌦ 1l, Si
2 = 1l⌦ Si, i = 1, 2, 3.

Lemma 4.1.

• The eigenvalues of (~S1+~S2)2 are J(J+1), with J = 0, 1, . . . , 2S.
The degeneracy of J is 2J + 1.

• [Si
1 + Si

2, (~S1 + ~S2)2] = 0, i = 1, 2, 3, and the eigenvalues of
Si
1 + Si

2 in the sector J are �J,�J + 1, . . . , J .

In the sequel we call J an eigenvalue of (~S1 + ~S2)2, even though the actual
eigenvalue is J(J + 1).
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Proof. It is enough to consider the case i = 3. We already have a basis of
eigenvectors of S3

1 +S3
2 , namely |ai⌦ |bi with a, b 2 {�S,�S+1, . . . , S}, so that the

eigenvalues of S3
1 +S3

2 are m = �2S,�2S+1, . . . , 2S, with degeneracy 2S+1� |m|.
The following relations are easily checked:

(~S1 + ~S2)
2 = 2S(S + 1) + 2~S1 · ~S2

= 1
2(S

+
1 + S+

2 )(S
�
1 + S�

2 ) +
1
2(S

�
1 + S�

2 )(S
+
1 + S+

2 ) + (S3
1 + S3

2)
2,

(4.7)

and

2~S1 · ~S2 = S+
1 S

�
2 + S�

1 S
+
2 + 2S3

1S
3
2 . (4.8)

The commutation relation of the lemma follows. Furthermore,

[S+
1 + S+

2 ,
~S1 · ~S2] = [S�

1 + S�
2 ,
~S1 · ~S2] = 0. (4.9)

The idea of the proof is similar to that of Lemma 3.2. Let  be an eigenvector

of (~S1 + ~S2)2 and S3
1 + S3

2 with eigenvalues (J,m), and consider (S(±)
1 + S

(±)
2 ) .

Its norm is nonnegative, so that |m|  J . It di↵ers from 0 if m 6= ±J and it is
eigenvector with eigenvalues (J,m± 1). Then J must be an integer smaller or equal
to 2S — otherwise, it is possible to construct eigenvectors of S3

1+S3
2 with eigenvalues

satisfying |m| > 2S.
Let DJ,m denote the degeneracy of (J,m). If  and  0 are two orthogonal

eigenvectors with eigenvalues (J,m), we can check that (S+
1 +S+

2 ) and (S+
1 +S+

2 ) 
0

are also orthogonal — this can be seen with the help of

(S�
1 + S�

2 )(S
+
1 + S+

2 ) = 2S(S + 1)Id+ 2~S1 · ~S2 � (S3
1 + S3

2)
2 � (S3

1 + S3
2). (4.10)

It follows that DJ,m+1 � DJ,m. A similar argument with (S�
1 + S�

2 ) implies that
DJ,m�1 � DJ,m. Then DJ,m does not depend on m; call it D̄J .

The degeneracy Dm of m can be written as

Dm =
2SX

J=|m|
D̄J . (4.11)

Then D̄J = DJ �DJ+1. Since Dm = 2S+1� |m|, we obtain D̄J = 1 and the lemma
follows. ⇤

Exercise 4.1. In each case, show that the following Hamiltonians are related by
unitary transformations. Write the unitary matrices explicitly.

(a) H1 = �1
2

X

x,y

JxyS
1
xS

1
y , H2 = �1

2

X

x,y

JxyS
2
xS

2
y , H3 = �1

2

X

x,y

JxyS
3
xS

3
y .

(b) H1 = �1
2

X

x,y

Jxy

⇣
S2
xS

2
y + S3

xS
3
y

⌘
, H2 = �1

2

X

x,y

Jxy

⇣
S1
xS

1
y + S3

xS
3
y

⌘
, H3 =

�1
2

X

x,y

Jxy

⇣
S1
xS

1
y + S2

xS
2
y

⌘
.
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(c) Assume that the graph is bipartite, that is, ⇤ = ⇤A [ ⇤B and Jxy = 0

if x, y 2 ⇤A or x, y 2 ⇤B. Then let H1 = �1
2

X

x,y

Jxy

⇣
S1
xS

1
y + S2

xS
2
y

⌘
,

H2 = �1
2

X

x,y

Jxy

⇣
S1
xS

1
y � S2

xS
2
y

⌘
, H3 = +1

2

X

x,y

Jxy

⇣
S1
xS

1
y + S2

xS
2
y

⌘
.

Exercise 4.2. Consider the Hilbert space C2 ⌦ C2 (case S = 1
2) and the basis

|ai⌦ |bi, a, b = ±1
2 . Write down the eigenvector of (~S1+ ~S2)2 with eigenvalue J = 0.


