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Part I — INTEGRATION

1 The challenges of a good definition of integra-
tion

Integration is a natural operation, it is the reverse of derivation. It is intuitively
defined as “the area below the curve”. If f is a nice function so that g(t) =

R

t

a

f(x)dx
makes sense, we have

g

0(t) = f(t). (1.1)

The intuitive definition of integration becomes confusing when looking at irreg-
ular functions, such as

(a) f(x) = 1/xa, with a > 0. Can we make sense of
R

b

0

dx

x

a and
R1
b

dx

x

a ?

1 2 3 4

1

2

3

4

5

(b) f(x) = cos 1

x

. What is
R

b

0

cos 1

x

dx?

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-1.0

-0.5

0.5

1.0

(c) Two variations of the previous example: g(x) = x cos 1

x

and h(x) = 1

x

cos 1

x

. It
is a good exercise to draw these functions!

(d) f(x) =

(

0 if x 2 Q,

1 if x 2 R \Q.

It is natural to wonder whether one really wants to integrate such functions?
There are good reasons to answer positively. As is well-known, R is a more conve-
nient set of numbers than Q. In a similar fashion, we will consider various spaces
of functions and these spaces should be large enough so as to contain the limits
of suitable Cauchy sequences. We are therefore seeking to define integration in a
general fashion.
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2 Step functions

We have just argued that integration needs to be defined very generally... but we
now consider a restricted class of functions.

Definition 2.1. A partition P of the interval [a, b] is a set of numbers,
P = {p

0

, p

1

, . . . , p

k

} such that a = p

0

< p

1

< · · · < p

k�1

< p

k

= b. Here,
k � 1 is an arbitrary integer.

If P,Q are two partitions and Q � P , one says that Q is a refinement of P .

Definition 2.2. A function ' : [a, b] ! R is called a step function if there
exists a partition P = {p

0

, . . . , p

k

} of [a, b] such that ' is constant on each
subinterval (p

i�1

, p

i

), 1  i  k.

Notice that if ' is constant on each subinterval of P , and Q is a refinement of
P , then ' is also constant on the subintervals of Q. We let S[a, b] denote the set of
all step functions on the interval [a, b]. It has the structure of a vector space:

Proposition 2.1. If f, g 2 S[a, b] and ↵, � 2 R, then ↵f + �g 2 S[a, b].

Proof. Let P a partition that is compatible with f , and Q a partition that is com-
patible with g. Then P [ Q is a refinement of both P and Q, where f, g are both
constant on subintervals. It is then clear that ↵f + �g is constant on subintervals
of P [Q, so it is a step function.

It may be worth pointing out that many spaces of functions are vector spaces,
such as the space B[a, b] of bounded functions or the space C[a, b] of continuous
functions. Note also that

C[a, b] ⇢ B[a, b] and S[a, b] ⇢ B[a, b]. (2.1)

We now define the integral of step functions.

Definition 2.3. (Integral of step functions) Let ' 2 S[a, b] and P =
{p

0

, . . . , p

k

} a compatible partition; we let '
i

denote the value of ' in the
interval (p

i�1

, p

i

), i = 1, . . . , k. The integral is defined as

Z

b

a

'(x)dx =
k

X

i=1

'

i

(p
i

� p

i�1

).

Notice that the definition of the integral does not depend on the choice of the
partition that is compatible with ' (why?). We also define the integral for b < a,
by setting

Z

b

a

'(x)dx = �
Z

a

b

'(x)dx. (2.2)
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Let us now point out important properties of integrals.

Proposition 2.2. (Additivity) For any ' 2 S[a, b] and c 2 (a, b), we have

Z

b

a

'(x)dx =

Z

c

a

'(x)dx+

Z

b

c

'(x)dx.

This statement is rather obvious and no proof is needed.

Proposition 2.3. (Linearity) For any ', 2 S[a, b] and ↵, � 2 (a, b), we
have

Z

b

a

�

↵'(x) + � (x)
�

dx = ↵

Z

b

a

'(x)dx+ �

Z

b

a

 (x)dx.

Proof. Let P = {p
0

, . . . , p

k

} be a partition that is compatible with ', (it is then
compatible with ↵'+� ). Let '

i

, 

i

be the values of ', on the interval (p
i�1

, p

i

).
Then

Z

b

a

�

↵'(x) + � (x)
�

dx =
k

X

i=1

�

↵'

i

+ � 

i

�

(p
i

� p

i�1

)

= ↵

k

X

i=1

'

i

(p
i

� p

i�1

) + �

k

X

i=1

 

i

(p
i

� p

i�1

)

= ↵

Z

b

a

'(x)dx+ �

Z

b

a

 (x)dx.

(2.3)

Proposition 2.4. (Fundamental theorem of calculus for step functions) Let
' 2 S[a, b] and P = {p

0

, . . . , p

k

} a partition compatible with '. Consider
the function

I : [a, b] ! R

I(t) =

Z

t

a

'(x)dx.

Then
(a) I(t) is continuous on [a, b].
(b) I is di↵erentiable on [k

i=1

(p
i�1

, p

i

) and I

0(t) = '(t).

Proof. Let '
i

be the value of ' on the interval (p
i�1

, p

i

), i = 1, . . . , k. Let t 2
(p

j�1

, p

j

); we have

I(t) =
j�1

X

i=1

'

i

(p
i

� p

i�1

) + '

j

(t� p

j�1

). (2.4)
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This is of the form const + '

j

t. It is continuous and the derivative exists and is
equal to '

j

= '(t). If t = p

j

, we can check that I(t) =
P

j

i=1

'

i

(p
i

� p

i�1

), so it is
continuous everywhere.

3 Convergence of sequences of functions

The goal is to extend the definition of integrals to functions that can be approximated
by step functions. For this, we need to define the notion of convergence for sequences
of functions. This can be done in various ways — the variety being a strength of
mathematical analysis. One way is to say that '

n

! f if for any x 2 [a, b], the
sequence of numbers ('

n

(x))
n�1

converges to f(x). This is pointwise convergence
which is an important and useful notion. But we now consider uniform convergence.
It is best introduced with the help of the supremum norm, that turns the vector
space of functions into a normed vector space.

Definition 3.1. The supremum norm of the bounded function f 2 B[a, b]
is

kfk1 = sup
x2[a,b]

|f(x)|.

The notation is motivated by the family of norms kfk
p

=
�R

b

a

|f(x)|pdx
�

1/p

(one
needs p � 1 in order to satisfy the triangle inequality). Then kfk1 = lim

p!1 kfk
p

.
Notice that any step function ' 2 S[a, b] satisfies k'k1 < 1. We let B[a, b]

denote the set of bounded functions, i.e., functions that have finite supremum norm.
It is a good exercise to verify that k · k1 satisfies all axioms of a norm; namely, it is

• positive: kfk1 � 0, and kfk1 = 0 implies that f(x) = 0 for all x;

• homogenous: k↵fk1 = |↵| kfk1 for all functions f and all numbers ↵;

• triangle inequality: kf + gk1  kfk1 + kgk1 for all functions f, g.

Proposition 3.1. For any ' 2 S[a, b], we have

�

�

�

Z

b

a

'(x)dx
�

�

�


Z

b

a

|'(x)|dx  k'k1(b� a).

Proof. Let P = {p
0

, . . . , p

k

} a partition that is compatible with ', and '
i

the value
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of ' on the interval (p
i�1

, p

i

). Then

�

�

�

Z

b

a

'(x)dx
�

�

�

=
�

�

�

k

X

i=1

'

i

(p
i

� p

i�1

)
�

�

�


k

X

i=1

|'
i

|(p
i

� p

i�1

)
⇣

=

Z

b

a

|'|
⌘


k

X

i=1

k'k1(p
i

� p

i�1

)

= k'k1(b� a).

(3.1)

Recall that a function f : A ! R, where A is a closed or open interval, is
continuous at x 2 A if

8" > 0, 9� > 0 such that 8y 2 A with |y � x| < �, we have
�

�

f(x)� f(y)
�

�

< ". (3.2)

Here, � = �(x, ") depends on x and ". The function f is continuous if is continuous
at every point x 2 A. For uniform continuity, we require that � be independent of
x.

Definition 3.2. A function f : A ! R is uniformly continuous if

8" > 0, 9� > 0 such that 8x, y 2 A with |x�y| < �, we have
�

�

f(x)�f(y)
�

�

< ".

It is clear that uniform continuity implies continuity. The converse is not nec-
essarily true, consider for instance the function f(x) = 1/x on (0, 1]. The lack of
uniform continuity is due to the fast variation and the absence of limit at one end
of the interval. This turns out to be the only possible di�culty. If the function is
continuous on a closed interval, then it is uniformly continuous, as stated in the next
lemma.

Lemma 3.2. If f : [a, b] ! R is continuous, then it is uniformly continuous.

Proof. We prove the contrapositive (i.e. instead of proving A =) B, we prove
nonB =) nonA). Let f a function on [a, b] that is not uniformly continuous.
Then

9" > 0 such that 8� > 0, 9x, y 2 [a, b] with |x� y| < � and
�

�

f(x)� f(y)
�

�

> ". (3.3)

The strategy is to identify a point in [a, b] where f is not continuous. Take �
n

= 1/n;
we get two sequences (x

n

)
n�1

and (y
n

)
n�1

such that |x
n

� y

n

| < 1

n

and |f(x
n

) �
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f(y
n

)| > ". Since (x
n

) is bounded, it has a convergent subsequence (x
nk
) by Bolzano-

Weierstrass theorem. Let u = lim
k!1 x

nk
. Since

|y
nk

� u|  |y
nk

� x

nk
|+ |x

nk
� u| ! 0, (3.4)

we also have y

nk
! u. Further, u 2 [a, b] because the interval is closed (here we

used the hypothesis that the interval is closed). We now have sequences (x
nk
), (y

nk
),

numbers " > 0 and u 2 [a, b], such that

•
�

�

f(x
nk
)� f(y

nk
)
�

�

> ";

• x

nk
! u, y

nk
! u.

Then f is not continuous at u, hence not continuous on [a, b].

We now introduce the class of functions for which integration will be defined.

Definition 3.3. A function f : [a, b] ! R is regulated if there exists a
sequence ('

n

) of step functions, '
n

2 S[a, b], that converges uniformly to f ,
i.e. kf � '

n

k1 ! 0 as n ! 1.
Alternatively, f is regulated if for every " > 0, there exists ' 2 S[a, b] such
that kf � 'k1 < ".

Let R[a, b] denote the set of regulated functions on [a, b]. It is not hard to check
that R[a, b] is a vector space. Using the triangle inequality, we have

kfk1 = kf � '+ 'k1  kf � 'k1 + k'k1 < 1, (3.5)

so regulated functions are bounded. R[a, b] contains all step functions, and also all
continuous functions:

Proposition 3.3. If f : [a, b] ! R is continuous, then it is regulated.

Proof. If f is continuous, then it is uniformly continuous by Lemma 3.2. For every
" > 0, there exists � > 0 such that |f(x) � f(y)| < " for all |x � y| < �. Let
P = {p

0

, . . . , p

k

} be a partition of [a, b] such that p
i

� p

i�1

< � for all i = 1, . . . , k.
Let ' 2 S[a, b] defined by

'(x) = f(p
i�1

) if x 2 [p
i�1

, p

i

), and '(b) = f(b). (3.6)

We have |f(x)�'(x)| = |f(x)�f(p
i�1

)| < " since |x�p

i�1

| < �, so that kf�'k1 < "

indeed.
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Recall that a function is piecewise continuous if it is continuous at all points of
the interval, except for a finite number of points. Using a partition that contains all
points of discontinuity, we can extend Proposition 3.3 to certain piecewise continuous
functions:

Corollary 3.4. Let f : [a, b] ! R be a function and P = {p
0

, . . . , p

k

} a
partition such that f is continuous on each interval (p

i�1

, p

i

), and that it
can be extended to a continuous function on [p

i�1

, p

i

]. Then f is regulated.

Here, we invite the reader to think about functions on [0, 1] that are not regulated.
Can you conceive one that is bounded and continuous at every point save one? And
can you prove the impossibility for a sequence of step functions to converge to this
peculiar function?

We can now define the integral of regulated functions.

Definition 3.4. The integral of f 2 R[a, b] is defined as

Z

b

a

f(x)dx = lim
n!1

Z

b

a

'

n

(x)dx,

where ('
n

)
n�1

is any sequence of step functions that converges uniformly to
f .

This definition raises two questions. Does the limit exists, and is it independent
of the choice of the sequence of step functions? The answer is yes:

Proposition 3.5. Let f 2 R[a, b] and ('
n

)
n�1

, ( 
n

)
n�1

be sequences of

step functions that converge uniformly to f . Then lim
n!1

R

b

a

'

n

and

lim
n!1

R

b

a

 

n

exist, and they are equal.

Proof. Using Proposition 3.1, we have

�

�

�

Z

b

a

'

n

(x)dx�
Z

b

a

'

m

(x)dx
�

�

�

=
�

�

�

Z

b

a

�

'

n

(x)dx�'
m

(x)
�

dx
�

�

�

 k'
n

�'
m

k1(b�a). (3.7)

Since k'
n

� '

m

k1  k'
n

� fk1 + kf � '

m

k1, we have that for every " > 0, there

exists N such that k'
n

� '

m

k1 <

"

b�a

for all m,n > N . Then
�

�

R

b

a

'

n

�
R

b

a

'

m

�

�

< "

for m,n > N , so that
�R

b

a

'

n

�

n�1

is a Cauchy sequence of numbers, and it therefore
converges.

Finally, the two sequences ('
n

) and ('
n

) give the same integral:

�

�

�

Z

b

a

'

n

(x)dx�
Z

b

a

 

n

(x)dx
�

�

�

 k'
n

� 
n

k1(b�a) 
⇥

k'
n

�fk1+kf� 
n

k1
⇤

(b�a) ! 0

(3.8)

as n ! 1.
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We established in Propositions 2.2 and 2.3 some properties of integrals in the
case of step functions. These extend readily to integral of regulated functions.

Proposition 3.6. (Additivity) For any f 2 R[a, b] and c 2 (a, b), we have

Z

b

a

f(x)dx =

Z

c

a

f(x)dx+

Z

b

c

f(x)dx.

Proposition 3.7. (Linearity) For any f, g 2 R[a, b] and ↵, � 2 (a, b), we
have

Z

b

a

�

↵f(x) + �g(x)
�

dx = ↵

Z

b

a

fi(x)dx+ �

Z

b

a

g(x)dx.

The proof is immediate, using that if '
n

! f and  
n

! g, then ↵'
n

+ � 

n

!
↵f + �g. Then it follows from Proposition 2.3.

Proposition 3.8. Let f 2 R[a, b] and m,M 2 R such that m  f(x)  M

for all x 2 [a, b]. Then

m(b� a) 
Z

b

a

f(x)dx  M(b� a).

Since �kfk1  f(x)  kfk1, this proposition also implies that
�

�

R

b

a

f

�

� 
kfk1(b� a).

Proof. For every n, there exists '
n

2 S[a, b] such that k'
n

� fk1 <

1

n

. Then for all
x 2 [a, b],

�m� 1

n

 f(x)� 1

n

 '

n

(x)  f(x) + 1

n

 M + 1

n

. (3.9)

If P = {p
0

, . . . , p

k

} is a partition compatible with '
n

, and '
n,i

denotes the value of
'

n

on the interval (p
i�1

, p

i

), then

� (m+ 1

n

)(b� a) 
k

X

i=1

'

n,i

(p
i

� p

i�1

)  (M + 1

n

)(b� a), (3.10)

The middle term is equal to
R

b

a

'

n

. Taking the limit n ! 1, we get the claim.

Example: Consider the function f(x) = x

↵ on [1,1). Let us check that f is
uniformly continuous when ↵ 2 [0, 1] but not when ↵ > 1. For ↵ > 1, observe that

f(x+�)�f(x) = (x+�)↵�x

↵ = x

↵

⇥�

1+ �

x

�

↵�1
⇤

� x

↵

⇥

1+↵ �

x

�1
⇤

= ↵�x

↵�1

, (3.11)

which diverges as x ! 1. No uniform continuity in this case. For ↵ 2 [0, 1], we use

0  f(x+ �)� f(x) = x

↵

⇥�

1 + �

x

�

↵ � 1
⇤

 x

↵

⇥

1 + ↵

�

x

� 1
⇤

= ↵�x

↵�1  ↵�, (3.12)
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uniformly in x 2 [0,1). Hence uniform continuity. The case ↵ = 0 needs special
treatment, but it is trivial.

Recall the devil’s staircase. Is it a regulated function? It is not a step function,
and it is not clear whether it is continuous (it is, in fact). But it is definitely
monotone increasing, which is enough.

Proposition 3.9. If f : [a, b] ! R is monotone, then it is regulated.

Proof. We can suppose that f is nondecreasing. Let k 2 N, and

q

i

= f(a) + i

k

�

f(b)� f(a)
�

, (3.13)

where i = 1, . . . , k. Then let p
i

2 [a, b] be a number such that f(x)  q

i

if x < p

i

and f(x) � q

i

if x > p

i

(p
i

is unique when f is increasing; it is not unique when f

has flat parts). It is possible that p
i+1

= p

i

. We define

'(x) =

(

q

i

if x 2 (p
i�1

, p

i

) for some p

i�1

< p

i

,

f(p
i

) if x = p

i

.

(3.14)

Then ' is a step function and

0  '(x)� f(x)  f(b)� f(a)

k

, (3.15)

so that k'� fk1 is as small as we wish by choosing k large enough.

Definition 3.5. Let f 2 R[a, b], and for x 2 [a, b], define the function
F : [a, b] ! R by

F (x) =

Z

x

a

f(t)dt.

F is called the primitive, or indefinite integral, or antiderivative of f .

Proposition 3.10. The primitive F of any regulated function f 2 R[a, b] is
continuous.

Proof. We have

|F (x)� F (y)| =
�

�

�

Z

x

a

f(t)dt�
Z

y

a

f(t)dt
�

�

�

=
�

�

�

Z

x

y

f(t)dt
�

�

�

 kfk1|x� y|. (3.16)

Then for every " > 0, we can choose � = "/kfk1 to get |F (x) � F (y)| < " for all
x, y with |x� y| < �.
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We can now formulate a version of the fundamental theorem of calculus.

Theorem 3.11. Let f 2 R[a, b], and assume that f is continuous at c 2
(a, b). Then F (x) =

R

x

a

f is di↵erentiable at c, and F

0(c) = f(c).

Proof. We have F (c+ h)�F (c) =
R

c+h

c

f(t)dt. Since f is continuous at c, for every
" > 0 there exists � > 0 such that f(c)� "  f(t)  f(c) + " for |t� c| < �. Then

h

�

f(c)� "

�


Z

c+h

c

f(t)dt  h(
�

f)c) + "

�

. (3.17)

Consequently,

� "  F (c+ h)� F (c)

h

� f(c)  " (3.18)

for all |h| < �. This is precisely the meaning of lim
h!0

F (c+h)�F (c)

h

= f(c).

If f 2 C[a, b], it is regulated by Proposition 3.3, and Theorem 3.11 shows that
its primitive is di↵erentiable at any point of (a, b). Another useful version of the
fundamental theorem of calculus is the following.

Theorem 3.12. Let f 2 C[a, b] and F a di↵erentiable function on [a, b]
such that F 0(x) = f(x) for all x 2 (a, b). Then

Z

b

a

f(x)dx = F (b)� F (a).

Proof. Consider the function g on [a, b],

g(x) = F (x)�
Z

x

a

f(t)dt. (3.19)

This function is di↵erentiable and g

0(x) = F

0(x)� f(x) = 0. This implies that g is
constant (this follows from the mean value theorem), so that g(a) = g(b), i.e.,

F (a) = F (b)�
Z

b

a

f(t)dt. (3.20)
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4 Methods of integration

The main two methods are the integration by parts and integration by substitution.
They both allow to replace the integral of a function by that of another function
which is hopefully simpler. The goal of this section is to establish the validity of the
corresponding formulæ.

We define the product of two functions by (fg)(x) = f(x)g(x).

Proposition 4.1. If f, g 2 R[a, b], then fg 2 R[a, b].

Proof. First, let us note that kfgk1  kfk1kgk1. Let ('
n

), ( 
n

) be regulated
functions such that '

n

! f and  
n

! g uniformly. Then '
n

 

n

is a step function
for all n, and

kfg � '

n

 

n

k1  kfg � '

n

gk1 + k'
n

g � '

n

 

n

k1
 kf � '

n

k1kgk1 + k'
n

k1kg �  

n

k1.

(4.1)

Since k'
n

k1 ! kfk1, it is bounded. Then everything tends to 0 as n ! 1, so fg

is indeed equal to the limit of a sequence of step functions.

Theorem 4.2. (Integration by parts) Let f, g be continuously di↵erentiable
functions on [a, b]. Then

Z

b

a

f

0
g = fg

�

�

�

b

a

�
Z

b

a

fg

0
.

It is perharps worth clarifying the notation used in the theorem; written explic-
itly, the equation is

Z

b

a

f

0(x)g(x)dx = f(b)g(b)� f(a)g(a)�
Z

b

a

f(x)g0(x)dx. (4.2)

Proof. Recall that (fg)0(x) = f

0(x)g(x) + f(x)g0(x). By Theorem 3.12 (the second
version of the fundamental theorem of calculus), we have

(fg)(b)� (fg)(a) =

Z

b

a

(fg)0(x)dx =

Z

b

a

f

0
g +

Z

b

a

fg

0
. (4.3)

Rearranging this identity, we get the formula of integration by parts.

This theorem is amazingly useful and versatile. Let us describe a nice application
to the Gamma function � : [0,1) ! [0,1), defined by

�(x) =

Z 1

0

t

x�1 e�t dt. (4.4)

12



Notice that [0,1) is not a closed interval, and � is not regulated around 0 when
x < 1. A correct definition for the integral above is

�(x) = lim
a!0+

lim
b!1

Z

b

a

t

x�1 e�t dt. (4.5)

One can check that the limits exist, and that it can be taken in any order. We use
Theorem 4.2 with f

0(t) = e�t and g(t) = t

x�1. Then f(t) = � e�t and g

0(t) =
(x� 1)tx�2, and we obtain

�(x) =

Z 1

0

e�t

t

x�1dt

= � e�t

t

x�1

�

�

�

1

0

+ (x� 1)

Z 1

0

e�t

t

x�2dt

= (x� 1)�(x� 2).

(4.6)

The first term in the middle equation is equal to lim
a!0+

lim
b!1(� e�t

t

x�1)
�

�

b

a

, which
is 0 if x > 1. This shows that for all x > 0, we have

�(x+ 1) = x�(x). (4.7)

Since �(1) =
R

1

0

e�t dt = � e�t

�

�

1
0

= 1, we obtain �(n + 1) = n! for integer n. The
Gamma function generalises factorials to real numbers!

We now discuss the method of substitution. It is based on the chain rule for
derivatives.

Theorem 4.3. Let f 2 C[a, b] and g : [c, d] ! [a, b] be di↵erentiable. Then

Z

d

c

f

�

g(x)
�

g

0(x)dx =

Z

g(d)

g(c)

f(t)dt.

Note that the above formula can also be written as

Z

b

a

f(x)dx =

Z

g

�1
(b)

g

�1
(a)

f

�

g(t)
�

g

0(t)dt, (4.8)

where g

�1(a) is equal to any value y 2 [c, d] such that g(y) = a.

Proof. The claim follows from the first version of the fundamental theorem of calcu-
lus, Theorem 3.11, and from the chain rule for derivatives. Let F (x) =

R

x

a

f . Then
F is di↵erentiable with F

0(x) = f(x), and

Z

g(d)

g(c)

f(t)dt = F

�

g(d)
�

� F

�

g(c)
�

. (4.9)
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Further, we have

d

dx
F

�

g(x)
�

= F

0�
g(x)

�

g

0(x) = f

�

g(x)
�

g

0(x), (4.10)

so that
Z

d

c

f

�

g(x)
�

g

0(x)dx = F

�

g(x)
�

�

�

�

d

c

. (4.11)

This is identical to the right side of Eq. (4.9).

Let us review a few examples.

(a) Consider the integral
R

b

a

cos(x2)xdx. We take f(x) = cosx and g(x) = x

2,

and Theorem 4.3 shows that the integral is equal to
1

2

Z

b

2

a

2

cos t dt = 1

2

�

sin b2�

sin a2
�

.

We can also proceed more directly and write

Z

b

a

cos(x2)xdx = 1

2

Z

b

a

⇣ d

dx
sin(x2)

⌘

dx,

which obviously gives the same result.

(b)

Z

b

a

sin x cos xdx = 1

2

Z

b

a

⇣ d

dx
sin2

x

⌘

dx = 1

2

�

sin2

b� sin2

a

�

.

(c)

Z

⇡

0

esinx cos x dx =
⇣ d

dx
esinx

⌘

dx = esinx

�

�

�

⇡

0

= 0.

If you find the answer 0 to be disappointing, evaluate the integral from 0 to
⇡/2 instead!

(d)

Z

e

1

1

x

log2 x dx = 1

3

Z

e

1

⇣ d

dx
log3 x

⌘

dx = 1

3

.

It is natural to approximate an integral by a direct sum. It is tempting to
decompose the interval [a, b] into smaller intervals, and to approximate the function
by a constant within each interval. Namely, given n 2 N, let a

i

= a + i

b�a

n

, i =
1, . . . , n. The question is whether

P

n

i=1

b�a

n

f(a
i

) is a good approximation for f . We

check that this converges to
R

b

a

f as n ! 1.

Proposition 4.4. Let f 2 R[a, b]. Then

lim
n!1

n

X

i=1

b� a

n

f(a
i

) =

Z

b

a

f(t)dt.

14



Proof. We first prove it for step function, then we use a standard continuity ar-
gument. If ' 2 S[a, b], there exists P = {p

0

, . . . , p

k

} such that ' is constant on
(p

i�1

, p

i

). Then

�

�

�

Z

b

a

'(t)dt�
n

X

i=1

b� a

n

'(a
i

)
�

�

�

 2k
b� a

n

k'k1. (4.12)

Indeed, the di↵erences occur only at the points of discontinuity of ', and the max-
imum jump is 2'k1. This goes to 0 as n ! 1, for any fixed '; the claim holds
therefore for step functions.

If f 2 R[a, b], then for any " > 0, there exists ' 2 S[a, b] such that kf�'k1 < ".
Then

�

�

�

n

X

i=1

b� a

n

f(a
i

)�
Z

b

a

f(t)dt
�

�

�


�

�

�

n

X

i=1

b� a

n

f(a
i

)�
n

X

i=1

b� a

n

'(a
i

)
�

�

�

+
�

�

�

n

X

i=1

b� a

n

'(a
i

)�
Z

b

a

'(t)dt
�

�

�

+
�

�

�

Z

b

a

'(t)dt�
Z

b

a

f(t)dt
�

�

�

.

(4.13)

The first and third terms of the right side are less than kf�'k1(b�a). The second
term vanishes in the limit n ! 1. We can make the right side as small as we wish
by first choosing " small enough, then n large enough.

5 Characterisation of regulated functions

A natural question is whether a given function is regulated. So far, we have seen
that:

• Step functions are regulated (this immediately follows from the definition of
regulated functions).

• Continuous functions on closed intervals are regulated (Proposition 3.3).

• Piecewise continuous functions, with some extra conditions, are regulated.

• Monotone functions on closed intervals are regulated (Proposition 3.9).

• A function such as f(x) = sin 1

x

on (0, 1] (and f(0) given some value) is not
regulated.

It turns out that a rather simple criterion holds true, namely, that left and right
limits of the function exist at every point. We use the notation

f(x+) = lim
y!x+

f(y) and f(x�) = lim
y!x�

f(y). (5.1)
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Notice that f(x±) may or may not exist.

Proposition 5.1. Let f : [a, b] ! R. It is regulated i↵ for every x 2 (a, b),
f(x+) and f(x�) exist, and f(a+) and f(b�) exist.

This is a beautifully explicit criterion; the proof is not easy and we treat both
implications separately.

Proof that f regulated implies that left and right limits exist: Let x 2 (a, b] and x

n

!
x�. Let '

k

2 S[a, b] such that kf � 'k1 <

1

k

. For any k, there exists �
k

such that
'

k

is constant on (x��
k

, x). Then there exists N
k

such that |x
n

�x| < �

k

if n > N

k

,
and

�

�

f(x
m

)� f(x
n

)
�

�

<

2

k

(5.2)

for all m,n > N

k

. So (f(x
n

))
n�1

is Cauchy, hence convergent. Let f(x�) denote its
limit.

If (x0
n

) is another sequence that converges to x�, we can consider the mixed
sequence (x

n

”) = (x
1

, x

0
1

, x

2

, x

0
2

, . . . ). We have x

n

” ! x�, so f(x
n

”) is Cauchy by
the above argument, hence convergent. All its subsequences converge to the same
limit, so f(x0

n

) ! f(x�) as well.

Proof that the existence of left and right limits implies that f is regulated: The idea
is to consider the set A

"

, defined for " > 0 by

A

"

=
n

c 2 [a, b] : 9' 2 S[a, b] such that
�

�

�

f � '

�

�

�

[a,c]

�

�

1 < "

o

. (5.3)

Here, f

�

�

[a,c]

denotes the restriction of f to the interval [a, c]. The set A

"

is the

maximal interval that contains a, and such that f can be approximated by a step
function. The goal is to show that A

"

= [a, b] for any " > 0.

(i) A
"

6= ;: Since f(a+) exists, there exists � > 0 such that |f(x) � f(a+)| < " for
all x 2 (a, a+ �). We can take

'(x) =

8

>

<

>

:

f(a) if x = a,

f(a+) if x 2 (a, a+ �),

f(a+ �) if x 2 [a+ �, b].

(5.4)

We have ' 2 S[a, b] and
�

�('�f)
�

�

[a,a+�]

�

�

1 < ", so A

"

contains the interval [a, a+ �].

(ii) supA
"

= b: Assume that supA
"

= c < b. There exists ' 2 S[a, b] such that
�

�('� f)
�

�

[a,c]

�

�

1 < ". Since f(c+) exists, we can repeat the previous argument and

get an approximating step function '0 on [c, c+ �] for some � > 0. Combining ' and
'

0, we get an approximation of f on [a, c+ �], so that supA
"

> c, contradiction.

(iii) b 2 A

"

: Since f(b�) exists, we can repeat the argument in (i) to get an approxi-
mating step function on [b��, b] for some � > 0. There is also an approximating step
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function on [a, b��] by (i) and (ii). They can be combined to give an approximation
on [a, b].

Then A

"

= [a, b] for any " > 0, so f 2 R[a, b].

6 Improper and Riemann integrals

There exist interesting functions that are not regulate, but whose integrals are well-
defined. An example is the Gamma function, �(x) =

R1
0

t

x�1 e�t dt; the integrant
is not always regulated at 0 (if x < 1) and the interval is infinite. Let us consider a
few examples.

(a)
R

1

0

x

�sdx, s > 0. The function is not regulated; we can calculate explicitly; if
s 6= 1,

Z

1

a

x

�sdx = 1

1�s

x

1�s

�

�

1

a

= 1

1�s

(1� a

1�s). (6.1)

As a ! 0+, the latter converges i↵ s  1. We would like to declare that
R

1

0

x

�sdx = 1

1�s

for s 2 [0, 1).

(b)
R

1

0

x

�1dx, which is the case s = 1 of item (a). We have

Z

1

a

x

�1dx = log x
�

�

1

a

= � log a. (6.2)

This tends to 1 as a ! 0+, so this integral should not converge.

(c)
R1
1

x

�sdx. The interval is infinite, but we can consider
R

b

1

x

�s and attempt to
let b ! 1. If s 6= 1, we get

Z

b

1

x

�sdx = 1

1�s

(b1�s � 1). (6.3)

This converges (to 1

s�1

) i↵ s > 1.

(d)
R1
1

x

�1dx. Since
R

b

1

x

�1dx = log b, this tends to 1 as b ! 1, so the integral
does not converge.

Definition 6.1. Let A be an interval on R (it can be open, closed, neither,
finite, infinite) and f a function A ! R that is regulated on all closed
intervals [c, d] ⇢ A. Let a = inf A and b = supA. If lim

c!a+

R

e

c

f(x)dx

exists for some e 2 (a, b), and lim
d!b�

R

d

e

f(x)dx exists for some e 2 (a, b),
then the improper integral

R

A

f(x)dx exists, and is defined to be

Z

A

f(x)dx = lim
c!a+

Z

e

c

f(x)dx+ lim
d!b�

Z

d

e

f(x)dx.
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It is not hard to verify that
R

A

f does not depend on the midpoint e 2 (a, b).

Let us discuss a few examples.

(a) f(x) = 1p
x

cos
p
x on (0,1). The primitive is F (x) = 2 sin

p
x, and

R

b

a

f(x)dx =

2 sin
p
b� 2 sin

p
a. We can take the limit a ! 0+, but not the limit b ! 1.

Then
R

1

0

f(x)dx exists as an improper integral, but not
R1
1

f(x)dx.

(b) Can we modify the function above so that the improper integral exists? Con-
sider f(x) = x

� 1
2�s cos

p
x where s is a fixed parameter. For which s does the

improper integral exists?

We can gain insight using integration by parts; namely,

Z

b

a

1

x

s

1p
x

cos
p
x dx =

2 sin
p
x

x

s

�

�

�

b

a

+ s

Z

b

a

2 sin
p
x

x

s+1

dx. (6.4)

In order to take the limit a ! 0+, the first term of the right side gives the
condition s  1

2

; the second term gives s <

1

2

. As for the limit b ! 1, the
first term gives the condition s > 0; this also implies that the second term
converges. Thus both limits exist if s 2 (0, 1

2

).

(c) If we consider an integral of a function such as f(x) = |x � 1|�1/2, we can
decompose it as

Z

2

0

dx

|x� 1|1/2 =

Z

1

0

dx

|x� 1|1/2 +

Z

2

1

dx

|x� 1|1/2 , (6.5)

and use the notion of improper integrals for each terms (this integral is then
equal to 4).

We now discuss the integral in the sense of Riemann. The idea is to find good
upper and lower bounds of the integral using step functions.

Definition 6.2. Let f : [a, b] ! R, and define

• The upper sum U

f

= inf
�R

b

a

' : ' 2 S[a, b] and '(x) � f(x) 8x 2
[a, b]

 

.

• The lower sum L

f

= sup
�R

b

a

' : ' 2 S[a, b] and '(x)  f(x) 8x 2
[a, b]

 

.

We say that f is Riemann-integrable i↵ U

f

= L

f

, in which case we define
R

b

a

f = U

f

= L

f

.

How does Riemann integration compare with the integral of regulated functions?
It turns out to be more general.
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Proposition 6.1. If f 2 R[a, b], then it is Riemann-integrable, and both
definitions give the same value.

Proof. Since f 2 R[a, b], for any n there exists '
n

2 S[a, b] such that

'

n

(x)� 1

n

 f(x)  '

n

(x) + 1

n

, (6.6)

for all x 2 [a, b]. A shifted step function is still a step function, so we get

Z

b

a

'

n

� b�a

n

 L

f

 U

f


Z

b

a

'

n

+ b�a

n

. (6.7)

Letting n ! 1, we see that L
f

= U

f

, and they are both equal to
R

b

a

f .

Let us look at some examples.

(a) f(x) = 1p
x

on [0, 1] is still not Riemann, since there exists no step function
that is larger than f .

(b) On the interval [0, 1], let f(x) =

(

1 if x = 2�n for some n = 0, 1, 2, ...

0 otherwise.
We

observe that f(0+) does not exist, so it is not regulated. But we can use

'

N

(x) =

(

1 if x  2�N

,

f(x) if x > 2�N

,

(6.8)

to get U

f


R

1

0

'

N

= 2�N , hence U

f

 0. Using the 0 step function, we get
L

f

� 0. Then f is Riemann-integrable and its integral is zero.

(c) The function sin 1

x

on [0, 1] is Riemann-integrable, although it is not regulated.

(d) The function f(x) =

(

1 if x 2 R \Q,

0 if x 2 Q,

on the interval [0, 1] is not Riemann-

integrable, and not regulated. Its integral cannot be defined as improper
integral either. It is Lebesgue-integrable, though, and

R

1

0

f = 1.

7 Uniform and pointwise convergence

“Analysis is the art to take limits”. Sequences of functions can converge in several
di↵erent ways, and this diversity should be embraced as to make the theory more
interesting and far-reaching. We have already seen the notion of uniform conver-
gence: f

n

! f uniformly if kf
n

� fk1 ! 0 as n ! 1. Another useful notion is
pointwise convergence:
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Definition 7.1. Let A ⇢ R and f

1

, f

2

, . . . be functions A ! R. We say
that (f

n

)
n�1

converges to f pointwise if f
n

(x) ! f(x) for every x 2 A.

It is worth comparing pointwise and uniform convergence.

• f

n

! f pointwise means that for all x 2 A, for all " > 0, there exists N

x,"

such that |f
n

(x)� f(x)| < " for all n > N

x,"

.

• f

n

! f uniformly means that 8" > 0, there existsN
"

such that |f
n

(x)�f(x)| <
" for all x 2 A and all n > N

x,"

.

Uniform convergence implies pointwise convergence, but the converse is not al-
ways true. Here are some examples (please draw them!).

(a) On the interval [0, 1], f
n

(x) =

(

1� nx if x 2 [0, 1

n

],

0 if x 2 ( 1
n

, 1].
It is not hard to check

that the pointwise limit f exists and is given by f(x) =

(

1 if x = 0,

0 if x 2 (0, 1].
Convergence is not uniform, since kf

n

� fk1 = 1 for all n, so it does not tend
to 0.

(b) On the interval [0, 1], f
n

(x) = x

n. The pointwise limit f exists and is given

by f(x) =

(

0 if x 2 [0, 1),

1 if x = 1.
Convergence is not uniform, since we again have

kf
n

� fk1 = 1 for all n.

(c) Let g be a (non identically zero) function R ! R such that g(x) = 0 for
|x| > 1, and let f

n

(x) = g(x � n). We have lim
n!1 f

n

(x) = 0 for all x,
but kf

n

k1 = kgk1, which does not depend on n and does not tend to 0.
Convergence is then pointwise but not uniform.

Recall that a metric space (i.e. a set with a notion of distance between its ele-
ments) is complete if every Cauchy sequence converges within the space. We know
that (R, | · |) is complete.

Proposition 7.1. The space of regulated function with the sup norm,
(R[a, b], k · k1), is complete.

Proof. Let (f
n

)
n�1

be a sequence of regulated functions, that is Cauchy with re-
spect to the sup norm. We show that (a) (f

n

) converges to some function f ; (b)
convergence is uniform; (c) the limit function f is regulated.

(a) f
n

converges pointwise. For every fixed x, we have |f
m

(x)�f

n

(x)|  kf
m

�f

n

k1,
so (f

n

(x))
n�1

is a Cauchy sequence of real numbers. It converges, and we define
(f(x) = lim

n!1 f

n

(x) for each x 2 [a, b].
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(b) f
n

! f uniformly. For every " > 0, there exists N
"

such that

f

m

(x)� "  f

n

(x)  f

m

(x) + ", (7.1)

for all x and all m,n > N

"

. Taking the limit m ! 1, we get

f(x)� "  f

n

(x)  f(x) + ", (7.2)

for all x and all n > N

"

. Then kf
n

� fk1 ! 0 indeed.

(c) f 2 R[ab]. Let '
n,m

be step functions such that '
n,m

! f

n

asm ! 1, uniformly.
Then there exists m

n

such that k'
n,mn �f

n

k1 <

1

n

. The sequence ('
n,mn) converges

uniformly to f :

k'
n,mn � fk1  k'

n,mn � f

n

k1 + kf
n

� fk1 (7.3)

and the right side goes to 0 as n ! 1, so f is regulated.

Next, a great theorem of analysis.

Theorem 7.2. Let A be an arbitrary interval in R (open, closed, neither,
finite, or infinite) and C(A) be the space of continuous functions A ! R.
Then (C(A), k · k1) is complete.

Proof. Let (f
n

)
n�1

be a Cauchy sequence of functions in C(A) (with respect with
the sup norm). Proceeding exactly as in the previous proof, we get the existence of
a function f : A ! R such that kf

n

� fk1 ! 0. There remains to verify that f is
continuous.

Let x 2 A. For every " > 0, there exists f

n

in the above sequence such that
kf

n

� fk1 <

"

3

. Further, there exists � > 0 such that |f
n

(y) � f

n

(x)| < "

3

for all
y 2 A with |y � x| < �. Then

|f(y)� f(x)|  |f(y)� f

n

(y)|+ |f
n

(y)� f

n

(x)|+ |f
n

(x)� f(x)|  ", (7.4)

for all y 2 A with |y � x| < �. This shows that f is indeed continuous.

The devil’s staircase function is a beautiful application of Theorem 7.2, which
can be used to establish that it is continuous. We can define the devil’s staircase as
the limit of functions f

n

: [0, 1] ! [0, 1], where f

0

(x) = x, and

f

n+1

(x) =

8

>

<

>

:

1

2

f

n

(3x) if x 2 [0, 1
3

),
1

2

if x 2 [1
3

,

2

3

],
1

2

+ 1

2

f

n

(3x� 2) if x 2 (2
3

, 1].

(7.5)
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The functions f

0

, f

1

, f

2

are illustrated above. At each iteration, the oblique
straight lines are replaced by two oblique lines and a flat line in the centre. It is
apparent that all f

n

are continuous. Further,

kf
n+1

� f

n

k1 = max
n

sup
x2[0, 13 )

|f
n+1

(x)� f

n

(x)|, sup
x2[ 13 ,

2
3 ]

|f
n+1

(x)� f

n

(x)|, sup
x2( 23 ,1]

|f
n+1

(x)� f

n

(x)|
o

= sup
x2[0, 13 )

|f
n+1

(x)� f

n

(x)|

= sup
x2[0, 13 )

|1
2

f

n

(3x)� 1

2

f

n�1

(3x)|

= 1

2

kf
n

� f

n�1

k1.

(7.6)

Iterating, we get kf
n+1

�f

n

k1  2�nkf
1

�f

0

k1. It follows that (f
n

)
n�1

is a Cauchy
sequence of continuous functions (with respect to the sup norm), so it converges to
a continuous function by Theorem 7.2.

Notice that f is a continuous function that is constant on intervals whose total
length is equal to 1!

8 Functions of two variables

We consider functions f : D ! R where D = [a, b]⇥[c, d], and explore the properties

of objects such as
R

b

a

f(x, t)dx, d

dt

R

b

a

f(x, t)dx, and
R

d

c

⇥R

b

a

f(x, t)dx
⇤

dt. First, let us
recall the notion of continuity.

Definition 8.1. Let f : D ! R, where D is an arbitrary set in R2.

• f is continuous at (x
0

, t

0

) 2 D if for every " > 0, there exists � > 0
such that |f(x, t)� f(x

0

, t

0

)| < " for all (x, t) 2 D with |x� x

0

|+ |t�
t

0

| < �.

• f is uniformly continuous if for every " > 0, there exists � > 0 such
that |f(x, t)� f(x0

, t

0)| < " for all (x, t), (x0
, t

0) 2 D with |x�x

0|+ |t�
t

0| < �.

As in the one-variable case (Lemma 3.2), one can prove that continuity implies
uniform continuity if D is a closed domain.
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Lemma 8.1. Assume that f is uniformly continuous on D, and let I :
[c, d] ! R be defined by I(t) =

R

b

a

f(x, t)dx. Then I is uniformly continuous
on the interval [c, d].

Proof. We have I(s)� I(t) =
R

b

a

⇥

f(x, s)�f(x, t)
⇤

dx. We know that for every " > 0,
there exists � > 0 such that |f(x, s) � f(y, t)| < " whenever |x � y| + |s � t| < �.
For this �, we have |I(s) � I(t)| < "(b � a) whenever |s � t| < �, so I is uniformly
continuous indeed.

Next, we exchange derivative and integral.

Proposition 8.2. Assume that f(x, t) and @f

@t

(x, t) are continuous on [a, b]⇥
[c, d]. Then for all t 2 (c, d), we have

d

dt

Z

b

a

f(x, t) dx =

Z

b

a

@f

@t

(x, t) dx.

Proof. Let F (t) =
R

b

a

f(x, t)dx and G(t) =
R

b

a

@f

@t

(x, t)dx. (Since f and @f

@t

are
continuous, these integrals exist.) We have

F (t+ h)� F (t)

h

�G(t) =

Z

b

a

h

f(x, t+ h)� f(x, t)

h

� @f

@t

(x, t)
i

dx

=

Z

b

a

h

@f

@t

(x, ⌧)� @f

@t

(x, t)
i

dx.

(8.1)

We used the mean-value theorem for the last line, and ⌧ is a number that depends
on x, t, h, which satisfies ⌧ 2 [t, t + h]. Since @f

@t

is uniformly continuous, the last
integrant vanishes as h ! 0. It follows that F is di↵erentiable, and its derivative is
G.

Next, a version of Fubini theorem, which allows to exchange the order of inte-
gration.

Theorem 8.3. Assume that f : [a, b]⇥ [c, d] ! R is continuous. Then

Z

b

a

h

Z

d

c

f(x, t)dt
i

dx =

Z

d

c

h

Z

b

a

f(x, t)dx
i

dt.

Physicists have another way to denote multiple integrals: The above identity
is written

R

b

a

dx
R

d

c

dt f(x, t) =
R

d

c

dt
R

b

a

dx f(x, t). This is less elegant but more
convenient, and we will often use it.
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Proof. Let

F (y) =

Z

y

a

dx

Z

d

c

dt f(x, t)�
Z

d

c

dt

Z

y

a

dx (f(x, t). (8.2)

We show that F (y) = 0 for all y 2 [a, b]. It is clear that F (a) = 0, and using the
fundamental theorem of calculus, we have

F

0(y) =

Z

d

c

dt f(y, t)� d

dy

Z

d

c

dt

Z

y

a

dx f(x, t). (8.3)

The second term of the right side is of the form d

dy

R

d

c

g(y, t)dt, with g(y, t) =
R

y

a

f(x, t)dx. The function g is continuous in y, t, and its derivative @g

@y

= f(y, t)
is also continuous. Then we can use Proposition 8.2 to exchange derivative and
integral. We get

F

0(y) =

Z

d

c

dt f(y, t)�
Z

d

c

dt f(y, t) = 0. (8.4)

We have shown that F is constant, hence 0.

In most cases, one can exchange the order of integration. But here is a coun-
terexample: On the domain, [0, 2]⇥ [0, 1], let

f(x, y) =

(

xy(x

2�y

2
)

(x

2
+y

2
)

3 if (x, y) 6= (0, 0),

0 if x = y = 0.
(8.5)

This function behaves badly at (0, 0), as it diverges both to +1 and �1; see the
illustration.

Integrals can be calculated explicitly (by substitution or integration by parts)
and we find

Z

2

0

dx

Z

1

0

dy f(x, y) =
1

5
,

Z

1

0

dy

Z

2

0

dx f(x, y) = � 1

20
.

(8.6)
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Here, order of integration matters!

We now discuss the exchange of limits and derivatives: If f

n

! f , does f

0
n

converge to f 0? An equivalent question is whether (C1[a, b], k·k1) is complete? Here,
C

1[a, b] denotes the space of continuously di↵erentiable functions on the interval
[a, b]. Let us look at an example.

On the interval [�1, 1], consider f
n

(x) =
q

x

2 + 1

n

. It is clear that f
n

(x) ! |x|
pointwise. Further, we have

|f
n

(x)� f(x)| = |f
n

(x)2 � f(x)2|
|f

n

(x) + f(x)| =
1

n

q

x

2 + 1

n

+ |x|
 1p

n

(8.7)

for all x, so that kf
n

�fk1 ! 0 as n ! 1. The functions f
n

are clearly di↵erentiable
(with f

0
n

(x) = (x2 + 1

n

)�1/2

x), they converge uniformly, but the limit f(x) = |x| is
not di↵erentiable. This shows that C1[�1, 1] is not complete with respect to the sup
norm.

But there are many cases where the limit is di↵erentiable.

Theorem 8.4. Assume that (f
n

)
n�1

is a sequence of functions in C

1[a, b]
such that (f

n

) and (f 0
n

) are Cauchy with respect to the sup norm. Then there
exists f 2 C

1[a, b] such that f
n

! f and f

0
n

! f

0, uniformly.

Proof. By Theorem 7.2 (C[a, b] is complete), there exist continuous functions f and
g such that f

n

! f and f

0
n

! g uniformly. There remains to check that f is
di↵erentiable, and that f 0 = g. We have

Z

x

a

g =

Z

x

a

lim
n

f

0
n

= lim
n

Z

x

a

f

0
n

= lim
n

�

f

n

(x)� f

n

(a)
�

= f(x)� f(a). (8.8)

Then f(x) = f(a) +
R

x

a

g, and the fundamental theorem of calculus (Theorem 3.11)
shows that f 0 exists and it is equal to g.

9 Series of functions

Infinite sums of functions are mathematically interesting and they have important

applications. Key examples include Taylor series, f(x) =
P1

k=0

f

(k)
(a)

k!

(x � a)k, and
Fourier series, f(x) =

P1
k=0

(a
k

cos kx + b

k

sin kx). Recall that a series of numbers
P

k

a

k

converges i↵ the sequence of partial sums, (
P

n

k=0

a

k

)
n�1

, converges as n ! 1.
This notion extends straightforwardly to series of functions.
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Definition 9.1. Let A be an arbitrary interval in R, and let (f
k

)
k�0

be
functions A ! R.

• The series of functions
P1

k=0

f

k

converges pointwise if
lim

n!1
P

n

k=0

f

k

(x) exists for each x 2 A.

• The series of functions
P1

k=0

f

k

converges uniformly if there exists
a function S : A ! R such that

lim
n!1

�

�

�

n

X

k=0

f

k

� S

�

�

�

1
= 0.

We have seen that, if g
n

! g uniformly, then
R

b

a

g

n

!
R

b

a

g. This immediately
implies that, if

P

k

f

k

is a series of functions that converges uniformly, we have

1
X

k=0

Z

b

a

f

k

(x) dx =

Z

b

a

⇣

1
X

k=0

f

k

(x)
⌘

dx. (9.1)

If all functions f
k

are continuous and the series
P

k

f

k

converges uniformly, it follows
from Theorem 7.2 that the limiting function is continuous. And if f

k

are di↵eren-
tiable functions and

P

k

f

k

,
P

k

f

0
k

converge uniformly, the limiting function is also
di↵erentiable by Theorem 8.4.

Now, a simple criterion for the uniform convergence of series of functions. It is
enough for many applications.

Proposition 9.1. Let (f
k

)
k�0

be functions A ! R, and assume that
P1

k=0

kf
k

k1 < 1. Then
P1

k=0

f

k

converges uniformly.

Proof. For any m < n, we have

�

�

�

m

X

k=0

f

k

�
n

X

k=0

f

k

�

�

�

1
=
�

�

�

n

X

k=m+1

f

k

�

�

�

1


1
X

k=m+1

kf
k

k1. (9.2)

The latter tends to 0 as m,n ! 1. Then (
P

n

k=0

f

k

)
n�1

is a Cauchy sequence of
functions with respect to the sup norm, so its pointwise limit exists and

P

n

k=0

f

k

converges uniformly to it.
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Jean Baptiste Joseph Fourier
(1768–1830)

Joseph Fourier hesitated between religion and mathematics, and became an ardent
revolutionary by 1793. He was arrested in 1794 during the Terror, but he escaped the
guillotine thanks to political changes (Robespierre was guillotined on 28 July 1794).
He studied at École Normale with Lagrange, Laplace, Monge, and was arrested and
freed again in 1795.
In 1798, he joined Napoléon in his invasion (in French: “expédition”) of Egypt. It
started well, until Nelson destroyed the French fleet in the Battle of the Nile (1
August 1798). Napoléon returned to Paris in 1799, but Fourier and the rest of the
expeditionary force remained there until 1801.
Back in France, he became Prefect of Isère (Grenoble) and he worked on the De-
scription of Egypt. Between 1804 and 1807, Fourier wrote On the propagation of
heat in solid bodies. This work was controversial at the time because of issues with
Fourier series.
When Napoléon marched through Grenoble in the “hundred days”, Fourier fled
instead of welcoming him. He was nonetheless nominated Prefect of the Rhône.
Shortly after this, Waterloo, and the end of Napoléon’s epopee.
In 1822 he published his essay Théorie analytique de la chaleur, which Lord Kelvin
described as “a great mathematical poem”.

Let us now discuss Fourier series. The goal is to express f : [0, 2⇡] ! R as a
series of sines and cosines. The main result is the following.

Theorem 9.2. Let (a
k

)
k�0

and (b
k

)
k�0

be sequences of numbers such that
P

k

|a
k

| < 1 and
P

k

|b
k

| < 1. Then

• The series
1
X

k=0

�

a

k

cos kx+ b

k

sin kx
�

converges uniformly on R.

• The limiting function, f(x), is continuous and 2⇡-periodic, i.e. f(x+
2⇡) = f(x).

• We have a

0

= 1

2⇡

R

2⇡

0

f(x)dx, and for all k = 1, 2, 3, . . . ,

a

k

=
1

⇡

Z

2⇡

0

f(x) cos kx dx,

b

k

=
1

⇡

Z

2⇡

0

f(x) sin kx dx.
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This theorem can be used in reverse order: Given a regulated function f on
[0, 2⇡], one can define the Fourier coe�cients (a

k

) and (b
k

); if the latter are absolutely
summable, the function f can be written as a convergent Fourier series.

Proof. Let f

k

= a

k

cos kx + b

k

sin kx. Then kf
k

k1 < |a
k

| + |b
k

|, and Proposition
9.1 implies that the Fourier series converges uniformly. Let f =

P

k

f

k

denote the
limiting function.

Since f is the uniform limit of continuous functions, it is continuous by Theorem
7.2. 2⇡-periodicity is immediate, since cos kx and sin kx are 2⇡-periodic functions
for all k 2 N.

The formulæ for the coe�cients is not hard to establish, knowing that integrals
can be interchanged with series that converge uniformly.

1

⇡

Z

2⇡

0

f(x) cos kx dx =
1

⇡

Z

2⇡

0

1
X

p=0

�

a

p

cos px+ b

p

sin px
�

cos kx dx

=
1

⇡

1
X

p=0

a

p

Z

2⇡

0

cos px cos kx dx+
1

⇡

1
X

p=0

b

p

Z

2⇡

0

sin px cos kx dx.

(9.3)

One can check that
Z

2⇡

0

cos px cos kx dx = ⇡�

p,k

if (p, k) 6= (0, 0),

Z

2⇡

0

sin px cos kx dx = 0,

(9.4)

where �
p,k

= 1 if p = k, and 0 otherwise, is called “Kronecker’s symbol”. The last
line in Eq. (9.3) is then equal to a

k

. The case of b
k

is similar.

If a function f is not continuous on [0, 2⇡] (or if f(0) 6= f(2⇡)), its Fourier
coe�cients cannot be absolutely summable — that leads otherwise to a contradic-
tion. If f is continuous, the situation is not clear. But if we assume f to be twice
di↵erentiable, it is definitely enough:

Proposition 9.3. Assume that f 2 C

2[0, 2⇡], and also that f(0) = f(2⇡)
and f

0(0) = f

0(2⇡). Then

|a
k

|, |b
k

|  2kf 00k1
k

2

.

Proof. We only prove that |a
k

|  2kf 00k1
k

2 , the other case being similar. Integrating
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by parts, and observing that the boundary terms vanish, we have

a

k

=
1

⇡

Z

2⇡

0

f(x) cos kx dx

=
1

⇡

h1

k

f(x) sin kx
�

�

�

2⇡

0

� 1

k

Z

2⇡

0

f

0(x) sin kx dx
i

= � 1

⇡k

h

�1

k

f

0(x) cos kx
�

�

�

2⇡

0

+
1

k

Z

2⇡

0

f

00(x) cos kx dx
i

= � 1

⇡k

2

Z

2⇡

0

f

00(x) cos kx dx.

(9.5)

Then |a
k

|  1

⇡k

2

R

2⇡

0

|f 00(x)| dx  2

k

2kf 00k1.

Let us make use of Fourier series in order to study the heat equation. It describes
the evolution of temperature in a metallic rod. If T (x) denotes the temperature at
x, the heat flux between x and x+h is proportional to T (x)�T (x+h). The change
of temperature at x is then proportional to T (x)�T (x+h)+T (x)�T (x�h). This
suggests that the time derivative of T is proportional to the second derivative with
respect to space.

We consider here a ring of perimeter 2⇡. Let T (x, t) the temperature at x 2
[0, 2⇡) and time t � 0. Its evolution satisfies the heat equation

@

@t

T (x, t) =
@

2

@x

2

T (x, t). (9.6)

The initial condition is give by the function T

0

(x). Let us assume that T
0

is su�-
ciently smooth (e.g. C2) so that it is given by a Fourier series, T

0

(x) =
P1

k=0

(a
k

cos kx+
b

k

sin kx). We also assume that at all times, we have

T (x, t) =
1
X

k=0

�

a

k

(t) cos kx+ b

k

(t) sin kx
�

. (9.7)

Assuming we can di↵erentiate inside the sums, the time first- and space second
derivatives are

@

@t

T (x, t) =
1
X

k=0

�

ȧ

k

(t) cos kx+ ḃ

k

(t) sin kx
�

,

@

2

@x

2

T (x, t) =
1
X

k=0

�

�k

2

a

k

(t) cos kx� k

2

b

k

(t) sin kx
�

.

(9.8)

Here, ȧ
k

(t), ḃ
k

(t) denote the time derivatives. Equating all terms, we get ordinary
di↵erential equations for each modes, namely

ȧ

k

(t) = �k

2

a

k

(t), a

k

(0) = a

k

, (9.9)
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and similarly for b
k

. The solutions are a

k

(t) = a

k

e�k

2
t . Let us then define

T (x, t) =
1
X

k=0

�

a

k

e�k

2
t cos kx+ b

k

e�k

2
t sin kx

�

. (9.10)

We can now proceed backwards and check that this series converges absolutely, so it
defines a function that indeed solves the heat equation. This establishes existence!
It is possible to prove uniqueness, although this is more di�cult and we leave it
aside. Of special interest is to study the solution above. As the time increases, the
Fourier coe�cients become smaller, it converges better and the function becomes
smoother. In the limit t ! 1, we see that a

k

(t), b
k

(t) ! 0 for all k � 1, and the
function converges to the constant function a

0

, which is equal to the average initial
temperature, a

0

= 1

2⇡

R

2⇡

0

T

0

(x) dx.
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Part II — NORMS AND INNER PRODUCTS

The reader will have noticed the similarities between the absolute values of num-
bers, and the sup norm of functions. Both allow to define convergence and Cauchy
sequences. A shared property is the triangle inequality which was used over and
over again. It is worth formalising this structure for general vector spaces.

10 Normed vector spaces

Recall that a vector space (over R) is a set where elements can be added with one
another, and multiplied by numbers.

Definition 10.1. Let V a vector space over R. A function k · k : V ! R is
a norm if

(i) it is positive: kvk � 0 for all v 2 V , and kvk = 0 i↵ v = 0;

(ii) it is homogeneous: k↵vk = |↵| kvk for all ↵ 2 R and v 2 V ;

(iii) it satisfies the triangle inequality: ku+vk  kuk+kvk for all u, v 2 V .

A vector space equipped with a norm is a normed space.

Notice that (ii) and (iii) imply that kvk � 0: We have 0 = k0k = kv � vk 
kvk+ k � vk = 2kvk, for all v 2 V .

Special cases of normed vector spaces are (R, | · |) or (C, | · |). More interesting
are norms on V = Rn; vectors are denoted x = (x

1

, . . . , x

n

). In cases (a) and (b), it
is not hard to check that all axioms for a norm are satisfied.

(a) The sup norm kxk1 = max
i=1,...,n

|x
i

|.

(c) The 1-norm kxk
1

=
P

n

i=1

|x
i

|.

(d) The Euclidean norm kxk
2

=
�

P

n

i=1

|x
i

|2
�

1/2

. This norm is induced by an
inner product and the triangle inequality follows from the Cauchy-Schwarz
inequality, as will be seen later.

(e) More generally, the p-norm kxk
p

=
�

P

n

i=1

|x
i

|p
�

1/p

. The triangle inequality
holds for p � 1 and is known as Minkowski inequality:

⇣

n

X

i=1

|x
i

+ y

i

|p
⌘

1/p


⇣

n

X

i=1

|x
i

|p
⌘

1/p

+
⇣

n

X

i=1

|y
i

|p
⌘

1/p

. (10.1)

The proof of this inequality is a bit di�cult.
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It is a good exercise to show that for all x 2 Rn, we have lim
p!1 kxk

p

= kxk1.

Definition 10.2. Let (V, k · k) be a normed space.

• A sequence (v
n

)
n�1

in V converges to v 2 V i↵ lim
n!1 kv�v

n

k = 0.

• A sequence (v
n

)
n�1

in V is a Cauchy sequence if for every " > 0,
there exists N

"

such that kv
m

� v

n

k < " for all m,n > N

"

.

• A normed vector space is complete i↵ every Cauchy sequence con-
verges; a complete normed space is called a Banach space.

Stefan Banach
(1892–1945)

Stefan Banach is one of the most important 20th century mathematicians. He was
born in Kraków and he moved in 1910 to Lemberg (then in the Habsburg empire)
in order to start university studies. He believed then that there was nothing new
to discover in mathematics, so he studied engineering. He spent World War I in
Kraków, where he met Hugo Steinhaus, who became a close friend and collaborator.
He moved back to Lwów (now in Poland) in 1920. With other mathematicians, he
founded the Lwów School of Mathematics, headquartered at the Scottish Café.
In 1939–41 Lwów was occupied by the Soviet Union and Banach became a cor-
responding member of the Academy of Sciences of Ukraine. But after the Nazi
invasion in 1941, universities in Lwów were closed and Banach avoided deportation
by working in a typhus research institute. The Soviets reoccupied Lwów in 1944.
As other Poles, Banach was preparing to leave the town, now called Lviv, but he
died of lung cancer in 1945.
Banach essentially founded linear analysis, and he obtained such fundamental re-
sults as the Hahn–Banach, Banach–Steinhaus, and Banach–Alaoglu theorems. The
Banach–Tarski paradox is a mathematically rigorous theorem that relies on the
axiom of choice and that states that a three-dimensional unit ball can be cut in
finitely-many pieces, these pieces moved and rotated, and reassembled so as to give
two unit balls. This puzzling result raises questions about the validity of the axiom
of choice.

One easily proves that if lim
n

v

n

exists, it is unique: If kv
n

� vk ! 0 and
kv

n

� v

0k ! 0, then kv� v

0k  kv� v

n

k+ kv
n

� v

0k ! 0; then kv� v

0k = 0, so that
v = v

0.
Notice that (R, | · |) is a Banach space, and also (Rn

, k · k
p

) for p 2 [1,1]. The
space of step functions with the sup norm, (S[a, b], k ·k1), is not complete, hence not
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Banach. But (R[a, b], k · k1) and (C[a, b], k · k1) are Banach spaces, by Proposition
7.1 and Theorem 7.2 respectively.

Definition 10.3. Two norms k · k and k · k0 on the vector space V are
equivalent is there exist k,K > 0 such that for all v 2 V ,

kkvk  kvk0  Kkvk.

The motivation for this notion is that equivalent norms give the same notion of
convergence (they induce the same topology). Indeed, if (v

n

)
n�1

satisfies kv
n

� vk !
0, then kv

n

� vk0 ! 0 for all norms k · k0 that are equivalent to k · k. Notice also
that if k · k and k · k0 are equivalent, and k · k0 and k · k00 are equivalent, then k · k
and k · k00 are also equivalent. Further, if (V, k · k) is Banach, and k · k and k · k0 are
equivalent, then (V, k · k0) is also Banach.

Now comes a disappointing result.

Proposition 10.1. All norms on Rn are equivalent.

Proof. We show that all norms are equivalent to k ·k1. Let (e
j

)n
j=1

denote the usual
basis of Rn, where x = (x

1

, . . . , x

n

) =
P

n

j=1

x

j

e

j

. Then

kxk =
�

�

�

n

X

j=1

x

j

e

j

�

�

�


n

X

j=1

|x
j

| ke
j

k  kxk1
n

X

j=1

ke
j

k. (10.2)

We can define K =
P

n

j=1

ke
j

k; this number is independent of x, and kxk  Kkxk1
for all x.

Next, we define

k = inf
n kxk
kxk1

: x 2 Rn \ {0}
o

. (10.3)

Since k  kxk
kxk1 , we have kkxk1  kxk for all x; this is what we want to show, but

we need to check that k 6= 0. By rescaling, we have that

k = inf
�

kxk : x 2 Rn and kxk1 = 1
 

. (10.4)

We proceed ab absurdo. If k = 0, there exists a sequence (x
`

)
`�1

such that
kxk1 = 1 for all `, and kx

`

k ! 0 as `! 1.
There exists a subsequence (x

`m)m�1

that converges with respect to the k · k1.
Indeed, by Bolzano-Weierstrass, there exists a subsequence of (x

`

) such that the first
components converge; again by Bolzano-Weierstrass, there exists a subsequence of
the subsequence such that the second components converge (the first components
still converge). We can continue to extract subsequences until all components con-
verge. It is not hard to check that the resulting subsequence converges with respect
to k · k1.
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Let x 2 Rn denote the limit of the subsequence (x
`m). The triangle inequality

implies that
�

�

�

kxk1 � kx
`mk1

�

�

�

 kx� x

`mk1. (10.5)

This tends to 0 as m ! 1, so that kxk1 = 1 since kx
`

k1 = 1 for all `. But we also
have

�

�

�

kxk � kx
`mk

�

�

�

 kx� x

`mk  Kkx� x

`mk ! 0, (10.6)

where we used the bound that we have already established. Since kx
`

k ! 0, this
implies that kxk = 0, hence x = 0 and kxk1 = 0, contradiction. The conclusion is
that k > 0.

Since all finite-dimensional vector spaces are isomorphic to Rn for some n, this
proposition shows that all norms are equivalent in finite-dimensional spaces. Things
are much more interesting in infinite-dimensional spaces, such as spaces of sequences.

Given x = (x
k

)
k�0

, we define

• kxk
p

=
⇣

1
X

k=0

|x
k

|p
⌘

1/p

and `
p

=
�

(x
k

)
k�0

: kxk
p

< 1
 

.

• kxk1 = sup
k2N

|x
k

| and `1 =
�

(x
k

)
k�0

: kxk1 < 1
 

. This is the space of all

bounded sequences.

One can check that (`
p

, k · k
p

) are normed vector spaces for p 2 [0,1]. (Minkowski
inequality holds for p � 1, and it is not hard to prove for p = 1, 2,1.) Notice also
that `

p

⇢ `

q

when p < q (exercise!), and that `
p

is a Banach space for all p 2 [1,1].
The k · k

p

norms are not equivalent; indeed, for p < q there exist sequences
(x(n))

n�1

of elements of `
p

such that kx(n)k
p

> " > 0 for all n, but kx(n)k
q

! 0. For
instance, consider

x

(n)

k

=

(

(k log n)�1/p if 1  k  n,

0 otherwise.
(10.7)

Then kx(n)k
p

=
�

1

logn

P

n

k=1

1

k

�

1/p

, which tends to 1 as n ! 1; but kx(n)k
q

=

(log n)�1/p

�

P

n

k=1

k

�q/p

�

1/q

. Since q/p > 1, the sum is bounded uniformly in n, so
the prefactor makes it go to 0 as n ! 1.
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11 Inner products

Definition 11.1. An inner product (or scalar product) on the vector
space V is a function h·, ·i : V ⇥ V ! R such that

(i) it is symmetric: hx, yi = hy, xi for all x, y 2 V ;

(ii) it is linear: hx,↵y + �zi = ↵hx, yi + �hx, zi for all ↵, � 2 R and
x, y 2 V ;

(iii) it satisfies hx, xi � 0 for all x 2 V , and hx, xi = 0 implies that x = 0.

This definition is for real inner products.1

Definition 11.2. The induced norm of an inner product is

kxk =
p

hx, xi.

A vector space with an inner product, which is complete with respect to the
induced norm, is called a Hilbert space.

Theorem 11.1.

(a) The induced norm is a norm.

(b) The inner product satisfies Cauchy–Bun�kóvski$i-Schwarz in-
equality:

�

�hx, yi
�

�  kxk kyk.

(c) The induced norm satisfies the parallelogram identity:

kx+ yk2 + kx� yk2 = 2kxk2 + 2kyk2.

Proof. (a) and (c) are easy and are left as an exercise.
For (b), we use the one inequality at hand, applied to x+ ↵y:

0  hx+ ↵y, x+ ↵yi = kxk2 + 2↵hx, yi+ ↵

2kyk2. (11.1)

This is nonnegative for all ↵ 2 R, so this quadratic polynomial cannot have two ze-
roes. This means that the discriminant is nonpositive, that is, 4hx, yi2�4kxk2kyk2 
0. This is precisely the Cauchy-Schwarz inequality.

1In quantum mechanics, one needs complex vector spaces where inner products satisfy hx, yi =
hy, xi; they are antilinear in the first variable and linear in the second.
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Cauchy–
Bunyakovsky–
Schwarz inequality

The full setting and the inequality came only progressively. Augustin-Louis Cauchy
(1789–1857) obtained it for sums in 1821. Víktor ⌫kovleviq Bun�kóvski$i (Vik-
tor Yakovlevich Bunyakovsky, 1804–1889) extended it to integrals in 1859. Hermann
Amandus Schwarz (1843–1921) proposed a modern proof in 1888.

Inner product spaces enjoy many more properties than normed spaces, so it
helps to know whether a given norm is the induced norm for some inner product. It
follows from Theorem 11.1 (c) that a necessary condition is that the norm satisfies
the parallelogram identity. It turns out that it is a su�cient condition.

Proposition 11.2. If a norm satisfies the parallelogram identity, then there
exists an inner product such that it is the induced norm. The inner product
is given by

hx, yi = 1

2

�

kx+ yk2 � kxk2 � kyk2
�

= 1

4

�

kx+ yk2 � kx� yk2
�

.

The two forms of the inner product are identical because of the parallelogram
identity.2

Proof. The proofs of properties (i) and (iii) of the inner product are immediate, but
linearity is harder to establish than could have perhaps been expected. We start
with

kx+y+zk2�kx�y�zk2 = kx+y+zk2+kx+y�zk2�kx�z+yk2�kx�z�yk2. (11.2)

Using the parallelogram identity, we then get

kx+ y + zk2 � kx� y � zk2 = 2kx+ yk2 + 2kzk2 � 2kx� zk2 � 2kyk2

= 2kx+ yk2 + 2kyk2 � 2kx� yk2 � 2kzk2.
(11.3)

2This proposition remains true for complex vector spaces, but the inner product is given by the
polarisation identity

hx, yi = 1
4

�

kx+ yk2 � kx� yk2 � ikx+ iyk2 + ikx� iyk2
�

.

The proof is nearly identical.
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The second equation is obtained by exchanging y and z. Averaging the two right
sides, we get

kx+ y + zk2 � kx� y � zk2 = kx+ yk2 � kx� yk2 + kx+ zk2 � kx� zk2. (11.4)

We have just proved that for all x, y, z 2 V ,

hx, y + zi = hx, yi+ hx, zi. (11.5)

There remains to prove that hx,↵yi = ↵hx, yi. Eq. (11.5) proves it for ↵ 2 N. Since
hx,�yi = �hx, yi, this holds for ↵ 2 Z. Further, by the homogeneity of norms, we
have

h↵x,↵yi = 1

4

�

k↵(x+ y)k2 � k↵(x� y)k2
�

= ↵

2hx, yi. (11.6)

Now let ↵ = p/q with p, q 2 N. Using both equations above, we have

hx,↵yi = 1

q

2 hqx, qyi = p

q

hx, yi. (11.7)

So linearity holds for all ↵ 2 Q. A continuity argument extends it to all ↵ 2 R. Let
↵

n

be rational numbers that converge to ↵; since the norm is continuous, we have

hx,↵yi = 1

4

�

kx+ ↵yk2 � kx� ↵yk2
�

= lim
n!1

1

4

�

kx+ ↵

n

yk2 � kx� ↵

n

yk2
�

= lim
n!1

hx,↵
n

yi

= lim
n!1

↵

n

hx, yi

= hx, yi.

(11.8)

We used linearity with respect to rational numbers, which we checked in Eq. (11.7).

12 Linear maps (operators)

Functional analysis (also called linear analysis) is the domain of mathematics that
studies vector spaces or arbitrary dimensions and linear maps between these spaces.
This field originates from quantum mechanics, but it has much broader applications.

A linear map (or operator) between vector spaces V and V

0 is a map T : V !
V

0 that satisfies
T (↵x+ �y) = ↵T (x) + �T (y), (12.1)

for all numbers ↵, � 2 R and vectors x, y 2 V . It is customary to write Tx instead of
T (x). Linear maps are quite peculiar, but they include many interesting examples:
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• Let V = Rm and V

0 = Rn, and T an n⇥m matrix. Then

Tx =

✓

T11 ··· T1m

...
...

Tn1 ··· Tnm

◆✓

x1

...
xm

◆

, (12.2)

which gives a vector with n components.

• A di↵erential operator: the map T : C1[a, b] ! C[a, b] where Tf = f

0.

• An integral operator: the map T : C[a, b] ! C[a, b] where the image Tf is the
function

(Tf)(x) =

Z

x

a

f(t) dt, (12.3)

with x 2 [a, b].

Definition 12.1. Let (V, k · k) and (V 0
, k · k0) be normed spaces. The oper-

ator norm of the linear map T : V ! V

0 is defined as

kTk = sup
x2V,x 6=0

kTxk0

kxk = sup
x2V,kxk=1

kTxk0.

We say that T is bounded if kTk < 1.

The reader should verify that both supremums above give the same value. It
follows from the definition that kTxk0  kTk kxk, a useful inequality. Before we
state the next proposition, let us recall that a map f between normed space (V, k ·k)
and (V 0

, k · k0) is continuous at y 2 V if for every " > 0, there exists � > 0 such
that kf(x)� f(y)k0 < " for all x 2 V such that kx� yk < �. Here, the map f is not
necessarily linear.

Linear maps are continuous i↵ they are bounded.

Proposition 12.1. Let (V, k · k) and (V 0
, k · k0) be normed spaces and T :

V ! V

0 be a linear map. The following are equivalent:

(a) T is continuous at 0 (here, 0 2 V ).

(b) T is continuous.

(c) kTk < 1.

Proof. It is clear that (b) implies (a). The converse implication follows from linear-
ity: Continuity at 0 implies that for all " > 0, there exists � > 0 such that

kTx� Tyk0 = kT (x� y)k0 < " (12.4)
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whenever kx� yk < �. This means that T is also continuous at y.
Next, we show that (a) implies (c). For x 2 V with kxk = 1, we have

kTxk0 = 1

�

kT (�x)k0 < "

�

. (12.5)

The upper bound holds for all x (such that kxk = 1), so that kTk <

"

�

< 1.
Finally, (c) implies (a): We choose � = "/kTk, so that for all kxk < �, we have

kTxk0  kTk kxk < kTk "

kTk = ". (12.6)

Then T is continuous at 0 indeed.

One easily checks that all matrices have finite operator norms. But di↵erential
operators are typically unbounded. Consider the normed spaces V = (C1[0, 1], k·k1)
and V

0 = (C[0, 1], k · k1), and the operator Tf = f

0. Let f
n

(x) = x

n; then f

0
n

(x) =
nx

n�1, so that kf
n

k1 = 1 and kf 0
n

k1 = n. Then

kTk � kf 0
n

k1
kf

n

k1
= n. (12.7)

This is true for any n, so that kTk = 1.
Let us now look at the integral operator mentioned above. Let V = (C[a, b], k ·

k1) and T : V ! V defined by (Tf)(x) =
R

x

a

f(t) dt. We have

kTk = sup
kfk1=1

kTfk = sup
kfk1=1

sup
x2[a,b]

�

�

�

Z

x

a

f(t) dt
�

�

�

= b� a. (12.8)

Indeed, the right side is an upper bound because |f(t)|  1; it is also a lower bound
by choosing the constant function f(t) = 1 for all t 2 [a, b].

13 Open and closed sets

The notion of open and closed sets is rather technical and its beauty is very well
hidden. But this cannot be avoided without prejudice, so we discuss it in this section.

Definition 13.1. Let (V, k · k) be a normed space.

• The open ball B(x, �) of radius � > 0 centred at x 2 V is

B(x, �) =
�

y 2 V : kx� yk < �

 

.

• A subset U ⇢ V is open if for every x 2 U , there exists � > 0 such
that B(x, �) ⇢ U .

• A subset U ⇢ V is closed if its complement U c = V \ U is open.
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The set B(x, �) =
�

y 2 V : kx � yk  �

 

is called the closed ball of radius �
centred on x. Heuristically, open sets are sets that do not contain their boundary,
while closed sets contain their boundary.

Let us review some examples.

(a) On R, the interval (a, b) = {x 2 R : a < x < b} is open; [a, b] = {x 2 R : a 
x  b} is closed; (a, b] = {x 2 R : a < x  b} is neither closed nor open. R is
both closed and open.

(b) On R2, it is a good exercise to draw the balls of radius 1, centred at 0, with
norms k · k

1

, k · k
2

, k · k1.

(c) Consider a function f 2 C[a, b], and draw a few other continuous functions
that belong to B(f, �) with respect to k · k1. What about other norms, such
as k · k

1

?

The property of being open (or closed) depends on the norm; if two norms are
equivalent, they yield the same open and closed sets.

Let f : V ! V

0 be a map between arbitrary sets V and V

0; for U ⇢ V

0, we
denote

f

�1(U) =
�

x 2 V : f(x) 2 U

 

. (13.1)

This definition makes sense even when f is not invertible. This and the notion of
open sets allow for an abstract but surprisingly useful characterisation of continuity.

Proposition 13.1. A map f between normed spaces (V, k ·k) and (V 0
, k ·k0)

is continuous i↵ f

�1(U) is open for any open U ⇢ V

0.

It is a good idea to illustrate this proposition by looking at continuous and
discontinuous functions R ! R.

In mathematics, the most general notion of continuity involves a topology, which
is a collection of open sets; the property above is then used as definition of con-
tinuity. This allows to work with objects that do not fit in a normed space. A
practical application of this proposition is that compositions of continuous maps are
continuous, as stated in the next corollary. Recall the notation (g �f)(x) = g(f(x)).

Corollary 13.2. If f : V ! V

0 and g : V 0 ! V

00 are continuous, then
g � f : V ! V ” is continuous.

The proof is immediate, as g � f maps back open sets to open sets.

Proof of Proposition 13.1. Assume that f is continuous, and let U ⇢ V

0 be open.
We show that f

�1(U) is open. Let x 2 f

�1(U); then f(x) 2 U , and there exists
" > 0 such that B(f(x), ") ⇢ U .

Since f is continuous, there exists � > 0 such that y 2 B(x, �) =) f(y) 2
B(f(x), ") ⇢ U . Then y 2 f

�1(U). This shows that B(x, �) ⇢ f

�1(U), so we have
proved that f�1(U) is open.
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We now assume that f�1(U) is open for any open U ⇢ V

0. Let x 2 V and " > 0.
Since f

�1(B(f(x), ")) is open, it contains the ball B(x, �) for some � > 0. Then
f(B(x, �)) ⇢ B(f(x), "), so f is continuous at x.

Here is a useful characterisation of closed sets, that indeed suggests that they
include boundary points.

Proposition 13.3. A subset U of the normed space (V, k · k) is closed i↵
x

n

2 U for all n, and x

n

! x, imply that x 2 U .

Then (0, 1] 2 R is not closed since the sequence ( 1
n

)
n�1

converges to 0, but 0
does not belong to (0, 1].

Proof. We prove that: U not closed , there exists (x
n

) in U with x

n

! x /2 U .

): If U is not closed, V \ U is not open, so there exists x 2 V \ U such that
B(x, �) 6⇢ V \U for all � > 0. It follows that for all n, there exists x

n

2 U such that
kx

n

� xk <

1

n

, so x

n

! x.

(: Let (x
n

) in U such that x
n

! x /2 U . For any � > 0, the ball B(x, �) contains
x

n

for n large enough; but x
n

/2 V \U , so V \U is not open, and U is not closed.

14 The contraction mapping theorem

Definition 14.1. Let (V, k · k) be normed space and U ⇢ V a closed subset.
A map f : U ! U is a contraction on U if there exists ⌘ < 1 such that

�

�

f(x)� f(y)
�

�  ⌘kx� yk

for all x, y 2 U .

Notice that it is not enough that kf(x) � f(y)k < kx � yk for all x, y 2 U ; one
needs the constant ⌘ < 1. It is worth pointing out that contractions are continuous
maps.

A vector x 2 V is a fixed point of the function f : V ! V if f(x) = x.

Theorem 14.1. (Contraction mapping theorem)
Let V be a Banach space; U ⇢ V a closed subset; f a contraction on U .
Then f has a unique fixed point in U .
Further, starting from any x

0

2 U , the sequence (x
n

) defined inductively by
x

n

= f(x
n�1

), n � 1, converges to the fixed point.

This result is also called the Banach fixed point theorem. We state it for
Banach spaces, but the space does not need to be linear — instead of a norm, a
distance is enough. We need completeness, though.
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Proof. We start by verifying that the sequence (x
n

) of the theorem is Cauchy. We
have

kx
n+1

� x

n

k = kf(x
n

)� f(x
n�1

)k  ⌘kx
n

� x

n�1

k  · · ·  ⌘

nkx
1

� x

0

k. (14.1)

If m < n,

kx
m

� x

n

k 
n�1

X

k=m

kx
k

� x

k+1

k 
1
X

k=m

⌘

kkx
1

� x

0

k =
⌘

m

1� ⌘

kx
1

� x

0

k. (14.2)

We see that for every " > 0, we can find N large enough so that kx
m

� x

n

k < " for
all m,n > N .

The sequence (x
n

) converges since V is complete; let x denote the limit. It
belongs to U since U is closed, and it is fixed point by continuity of f :

f(x) = lim
n!1

f(x
n

) = lim
n!1

x

n+1

= x. (14.3)

Finally, the fixed point is unique: If x, z are two fixed points, we have

kx� zk = kf(x)� f(z)k  ⌘kx� zk, (14.4)

which implies that kx� zk = 0.

The proof shows that convergence of the sequence (x
n

) is exponentially fast.
Let us illustrate the theorem with a few applications. First, consider the equation

e�ax = x with the parameter a 2 (0, 1). We are looking for solution(s) x 2 [0,1).
Let f(x) = e�ax ; by the mean-value theorem,

| e�ax � e�ay | = |f 0(⇠)| |x� y| (14.5)

with ⇠ between x and y. Then |f 0(⇠)| = a e�a⇠  a, so that |f(x)� f(y)| < a|x� y|,
and f is a contraction. This proves that there exists a unique solution to the above
equation.

Integral equations. Consider C[a, b] with the k ·k1 norm. We are given functions
k : [a, b] ⇥ [a, b] ! R and g : [a, b] ! R, and we consider the Fredholm integral
equation of the 2nd kind:

f(x)�
Z

b

a

k(x, y)f(y)dy = g(x). (14.6)

Introducing the operator T : C[a, b] ! C[a, b] by

(Tf)(x) = g(x) +

Z

b

a

k(x, y)f(y)dy, (14.7)
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we see that the equation above is the fixed point equation Tx = x. We seek su�cient
conditions for the existence of a unique solution. We have

kTf � Tgk1 = sup
x2[a,b]

�

�

�

Z

b

a

k(x, y)
�

f(y)� g(y)
�

dy
�

�

�

 sup
x2[a,b]

Z

b

a

|k(x, y)|
�

�

f(y)� g(y)
�

�dy

 kf � gk1 sup
x2[a,b]

Z

b

a

|k(x, y)| dy.

(14.8)

We see that T is a contraction if

sup
x2[a,b]

Z

b

a

|k(x, y)| dy < 1. (14.9)

The contraction mapping theorem implies the existence of a unique fixed point.
It is worth doing the same exercise with norm k · k

1

instead of k · k1. We find
that T is a contraction provided

Z

b

a

⇣

sup
y2[a,b]

|k(x, y)|
⌘

dx < 1. (14.10)

This condition is distinct from the one before, so we can solve other equations.
But a non-trivial problem occurs here, namely that the space (C[a, b], k · k

1

) is not
complete; it must first be completed, in a similar way that R is the completion of
Q, so the contraction mapping theorem can be applied.

Ordinary di↵erential equations. Consider an ordinary di↵erential equation of
the form

dx

dt
= F

�

t, x(t)
�

,

x(t
0

) = x

0

.

(14.11)

Here, x is a function on R, x
0

2 R is the initial conditions, and F is a function
R2 ! R. We are looking for su�cient conditions that guarantees the existence of a
di↵erentiable function x that solves this equation. We use the contraction mapping
theorem.

It helps to use an integral equation; assuming that x is a solution to the equation
above, we can integrate and we get

x(t)� x(t
0

) =

Z

t

t0

F

�

s, x(s)
�

ds, (14.12)

or x(t) = x(t
0

)+
R

t

t0
F

�

s, x(s)
�

ds. Conversely, if x solves the integral equation, then
it solves the di↵erential equation by the fundamental theorem of calculus (Theorem
3.11; we should assume here that F is continuous).
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Let T denote the Picard operator

T :C[t
0

� �, t

0

+ �] ! C[t
0

� �, t

0

+ �],

x 7! x

0

+

Z

t

t0

F

�

s, x(s)
�

ds.
(14.13)

The integral equation becomes Tx = x, so we are looking for fixed points of T . We
equip C[t

0

� �, t

0

+ �] with the sup norm (so it is complete indeed). Let us assume
that F is Lipschitz-continuous with respect to the second variable, namely that

|F (s, t)� F (s, u)|  L|t� u|, (14.14)

for a constant L that does not depend on s, t, u. Then

�

�

Tx(t)� Ty(t)
�

� =
�

�

�

Z

t

t0

⇣

F

�

s, x(s)
�

� F

�

s, y(s)
�

⌘

ds
�

�

�


Z

t

t0

L

�

�

x(s)� y(s)
�

� ds

 L|t� t

0

| kx� yk1.

(14.15)

This shows that kTx � Tyk1  L� kx � yk1, so T is a contraction if L� < 1.
Hence the existence of a unique solution. We have just proved the Picard-Lindelöf
theorem.

Theorem 14.2. Let D = [t
0

� a, t

0

+ a] ⇥ [x
0

� b, x

0

+ b]. Assume that
F : D ! R is continuous in the first variable and Lipschitz-continuous
in the second variable. Then there exists � > 0 such that the di↵erential
equation dx

dt

= F (t, x(t)) has a unique solution x 2 C

1[t
0

� �, t

0

+ �].

It is worth pointing out that the conclusion of this theorem is not obvious. For
instance, the equation dx

dt

=
p

x(t) has two solutions with t 2 [0, 1]: x ⌘ 0 and
x(t) = 1

4

t

2. The theorem does not apply because the function F (t) =
p
t is not

Lipschitz.

Newton-Raphson method. This is a method that helps to solve the equation
f(x) = 0, where f is a function [a, b] ! R. The idea is to start with a reasonable
guess, x

0

, and to apply the following iteration:

x

n+1

= x

n

� f(x
n

)

f

0(x
n

)
. (14.16)

Then we hope that x
n

tends to the solution as n ! 1. Draw a picture to see why!
The method does not always work. A counter-example is the function g(x) =

x

1/3, with x

0

6= 0. One gets x

n+1

= �2x
n

, which does not define a convergent
sequence.
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We assume that f 2 C

2(R), that g0(x) 6= 0 for all x, and that

⌘ = sup
x2R

|f(x)f 00(x)|
f

0(x)2
< 1. (14.17)

As we shall see, it is enough to guarantee that the equation f(x) = 0 has a unique
solution, and that x

n

converges to it.
We work with the Banach space (R, | · |). Let us introduce

g(x) = x� f(x)

f

0(x)
. (14.18)

The fixed point equation g(x) = x is equivalent to f(x) = 0. By the mean-value
theorem, there exists ⇠ such that

�

�

g(x)� g(y)
�

� = |g0(⇠)| |x� y| =
�

�

�

f(⇠)f 00(⇠)

f

0(⇠)2

�

�

�

|x� y|  ⌘|x� y|. (14.19)

It follows that the equation has a unique solution, and that the sequence (x
n

)
n�0

converges exponentially fast to it. In fact, it can be checked that convergence is
much faster: Using Taylor expansion with remainder, we have

g(x+ a) = x+ a� f(x+ a)

f

0(x+ a)

= x+ a�
f(x) + af

0(x) + 1

2

a

2

f

00(⇠
1

)

f

0(x) + af

00(⇠
2

)

= x+ a

f

0(x) + af

00(⇠
2

)

f

0(x) + af

00(⇠
2

)
� a

f

0(x) + 1

2

af

00(⇠
1

)

f

0(x) + af

00(⇠
2

)

= x+ a

2

f

00(⇠
2

)� 1

2

f

00(⇠
1

)

f

0(x) + af

00(⇠
2

)
.

(14.20)

Here, ⇠
1

, ⇠

2

are close to x, |⇠
1,2

� x| < |a|. Let

C = sup
|y1|,|y2|<|a|

f

00(x+ y

2

)� 1

2

f

00(x+ y

1

)

f

0(x) + af

00(x+ y

2

)
. (14.21)

Then |g(x + a) � x|  Ca

2. Let us now look at the sequence (x
n

) defined by
x

n+1

= g(x
n

), and let a
n

= |x� x

n

|. We have just shown that a
n+1

 Ca

2

n

. Let us
now assume that a

0

 C

�1

" for some " < 1 (since x

n

! x, we can choose n large
enough so that |x

n

� x| < C

�1

", and re-start the sequence here). It is easy to prove
by induction that

a

n

< C

�1

"

2

n
(14.22)

for all n � 0. Indeed, this is true for n = 0, and

a

n+1

 C

⇣

C

�1

"

2

n
⌘

2

= C

�1

"

2

n+1
. (14.23)

45

Notice that " can be taken to be arbitrarily small! Taking " = 1

10

, convergence is so
fast that the number of correct digits doubles at every step!

Jacobi algorithm. Our last application of the contraction mapping theorem is a
method that allows to compute the solution to the linear algebra equation

Ax = b, (14.24)

where x, b are vectors in Rn, and A is an n⇥n matrix. Assuming that A is invertible,
the solution is x = A

�1

b, but computation of A�1 is tricky. Jacobi algorithm consists
of decomposing A = D + R, where D contains the diagonal of A and R the o↵-
diagonal terms:

A =

0

B

B

B

@

a

11

a

12

· · · a

1n

a

21

a

22

· · · a

2n

...
...

...
a

n1

a

n2

· · · a

nn

1

C

C

C

A

=

0

B

B

B

@

a

11

0 · · · 0
0 a

22

...
. . .

0 a

nn

1

C

C

C

A

+

0

B

B

B

@

0 a

12

· · · a

1n

a

21

0 · · · a

2n

...
...

...
a

n1

a

n2

· · · 0

1

C

C

C

A

.

(14.25)

We assume that all diagonal terms di↵er from zero. The matrix D

�1 is easy to
compute, since

D

�1 =

0

B

B

B

@

a

�1

11

0 · · · 0
0 a

�1

22

...
. . .

0 a

�1

nn

1

C

C

C

A

. (14.26)

We now introduce the map f : Rn ! Rn by

f(x) = D

�1(b�Rx). (14.27)

The fixed point equation f(x) = x amounts to Dx = b� R(x), which is equivalent
to (D + R)x = b, i.e. Ax = b. Let k · k be any norm on Rn; recall that it induces
the operator norm on matrices kMk = supkxk=1

kMxk. Then we have

kf(x)� f(y)k = kD�1

R(x� y)k  kD�1

Rk kx� yk. (14.28)

We make the new assumption kD�1

Rk < 1 so that f is a contraction. This allows
to calculate the first terms of the inductive sequence x

n+1

= f(x
n

), which gives a
good approximation to the solution of Eq. (14.24).

The method works for matrices A such that kD�1

Rk < 1; it may help to choose
the norm wisely, so as to make kD�1

Rk as small as possible.
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pointwise, 20
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heat equation, 29
Hilbert space, 35

improper integral, 17
indefinite integral, 10
induced norm, 35
inequality
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integral
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of step function, 3
Riemann, 18

integration by parts, 12

integration by substitution, 13

Jacobi algorithm, 46

linear map, 37
Lipschitz-continuous, 44

Minkowski inequality, 31

Newton-Raphson method, 44
norm, 31

equivalent, 33
induced, 35
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normed space, 31
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operator, 37
operator norm, 38

parallelogram identity, 35
Picard operator, 44
Picard-Lindelöf theorem, 44
pointwise convergence, 20
polarisation identity, 36
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Riemann integral, 18
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Schwarz inequality, 35
series of functions, 26
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