Assignment 1

Due Monday 16 October 15:00. Two problems will be selected for marking among those with boxed numbers. There are 4 points for each of the two problems, and 2 points for presentation. Do not forget to write your name and your group (1: Tuesday 12-1/Atkinson; 2: Tuesday 2-3/Vasdekis; **3**: Thursday 1-2/Archer; **4**: Friday 12-1/Bowditch).

- 1. Give an example of a step function $[0,1] \to \mathbb{R}$ that takes four different values and that is discontinuous at three points. Is there a step function $[0,1] \to \mathbb{R}$ which takes two different values and is discontinuous at three million points?
- **2.** Let $\varphi, \psi : [a, b] \to \mathbb{R}$ be step functions.
- (a) Prove that $|\varphi|$ is a step function and that $|\int_a^b \varphi(x) dx| \leq \int_a^b |\varphi(x)| dx$. (b) Prove that $\int_a^b |\varphi(x) + \psi(x)| dx \leq \int_a^b |\varphi(x)| dx + \int_a^b |\psi(x)| dx$.
- **3.** Let φ, ψ , and hence $\varphi + \psi$, be step functions $[a, b] \to \mathbb{R}$. Write $z(\varphi)$ for the number of discontinuities of φ . Prove or disprove:
- (a) $z(\varphi + \psi) \le z(\varphi) + z(\psi)$.
- (b) $z(\varphi + \psi) \ge \max\{z(\varphi), z(\psi)\}.$
- **4.** Let $\varphi, \psi : [a, b] \to \mathbb{R}$ be step functions.

(a) Prove that their product $\varphi \psi : [a,b] \to \mathbb{R}$ is a step function. (b) Prove that $(\int_a^b \varphi(x)\psi(x)\mathrm{d}x)^2 \le \int_a^b \varphi(x)^2\mathrm{d}x \int_a^b \psi(x)^2\mathrm{d}x$. [This is called the Cauchy-Schwarz inequality for the integral of step functions.

Suggestion: Consider the quadratic function of t defined by $\int_a^b (t\varphi + \psi)^2$.]

- **5.** Draw a qualitative plot of the following functions on the interval $(0, \infty)$:
- $\overline{(a)} f(x) = \sin \frac{1}{x}$.
- (b) $g(x) = \sqrt{x} \sin \frac{1}{x}$. (c) $h(x) = \frac{\sin x}{x}$.
- **6.** Give a proof of the additivity of integrals of step functions. Namely, prove that for any $\varphi \in S[a,b]$ and any $c \in (a,b)$, we have

$$\int_{a}^{b} \varphi(x) \mathrm{d}x = \int_{a}^{c} \varphi(x) \mathrm{d}x + \int_{c}^{b} \varphi(x) \mathrm{d}x.$$

7. Consider the step function $f \in S[0,2]$:

$$f(x) = \begin{cases} -1 & \text{if } 0 \le x < \frac{1}{2}; \\ -2 & \text{if } x = \frac{1}{2}; \\ \frac{1}{2} & \text{if } \frac{1}{2} < x \le \frac{4}{3}; \\ 1 & \text{if } \frac{4}{3} < x \le 2. \end{cases}$$

Define $F(x) = \int_0^x f(t) dt$, with $x \in [0, 2]$. Draw f and F.

8. For $s, t \in \mathbb{R}$, let us define the step function $f \in S[0, 2]$:

$$f(x) = \begin{cases} 1 & \text{if } 0 \le x < \frac{3}{4}; \\ s & \text{if } x = \frac{3}{4}; \\ t & \text{if } \frac{3}{4} < x \le \frac{3}{2}; \\ 2 & \text{if } \frac{3}{2} < x \le 2. \end{cases}$$

Find all values of s, t for which the integral $\int_0^2 f$ is equal to 0.