Assignment 2

Due Monday 23 October 15:00. Two problems will be selected for marking among those with boxed numbers. There are 4 points for each of the two problems, and 2 points for presentation. Do not forget to write your name and your group (1: Tuesday 12-1/Atkinson; 2: Tuesday 2-3/Vasdekis; **3**: Thursday 1-2/Archer; **4**: Friday 12-1/Bowditch).

- 1. (a) Let $f(x) = x \sin \frac{1}{x}$ for $x \in (0, 2\pi]$ and f(0) = 0. Prove that f is regulated. (b) Let $f(x) = \frac{1}{x}$ for $x \in (0, 1]$ and f(0) = 0. Prove that f is not regulated.
- **2**. (a) Give an example of a regulated function f on [0,1] such that $f(x) \geq 0$ for all $x \in [0,1]$, $\int_0^1 f(x) dx = 0$, and such that $f(x_0) > 0$ for at least one $x_0 \in [0, 1]$. (b) Show that if f is a continuous function on [a, b] that satisfies $f(x) \ge 0$ for all $x \in [a, b]$ and
- $\int_a^b f(x) dx = 0$, then f is identically zero.
- **3.** Let $f : [a,b] \to \mathbb{R}$ be regulated and non-negative. Prove that $g : [a,b] \to \mathbb{R}$ defined by $q(x) = \sqrt{f(x)}$ is regulated.
- 4. Let a > 0. By using a suitable sequence of step functions on [0, a], show directly from the definition that $\int_0^a x dx = \frac{1}{2}a^2$.
- **5.** By using a suitable sequence of step functions φ_n with partition $P = \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\}$, show directly from the definition that $\int_0^1 e^x dx = e - 1$.
- **6.** The goal is to show the *Riemann-Lebesgue lemma*, namely that $\int_a^b f(x) \sin(nx) dx \to 0$ as $n \to \infty$, for any regulated function f. For this, show that
- (a) For all a < b, we have $\int_a^b \sin(nx) dx \to 0$ as $n \to \infty$.
- (b) By considering separately each interval of the partition, show that $\int_a^b \varphi(x) \sin(nx) dx \to 0$ as $n \to \infty$ for all $\varphi \in S[a, b]$.
- (c) Extend this to all $f \in R[a, b]$.
- 7. Give an example of a function f:[0,1] that is bounded, piecewise continuous, and not regulated. Prove that it is impossible to approximate this function: There exists $\varepsilon > 0$ such that any step function φ satisfies $||f - \varphi||_{\infty} > \varepsilon$.
- **8.** Let $f \in R[-1,1]$ be an odd function, meaning that f(-x) = -f(x). Show that $\int_{-1}^{1} f(x) dx = 0$.