Assignment 3

Due Monday 30 October 15:00. Two problems will be selected for marking among those with boxed numbers. There are **4 points** for each of the two problems, and **2 points** for presentation. Do not forget to write **your name** and **your group** (1: Tuesday 12-1/Atkinson; **2**: Tuesday 2-3/Vasdekis; **3**: Thursday 1-2/Archer; **4**: Friday 12-1/Bowditch).

1. Find the derivatives of the following functions:

1.
$$F(x) = \int_1^x \log t \, dt, x > 1;$$

2.
$$G(x) = \int_{x}^{0} \sqrt{1 + t^4} dt, x \in \mathbb{R};$$

3.
$$H(x) = \int_{x}^{x^{2}} e^{-t^{2}} dt, x \in \mathbb{R};$$

4.
$$I(x) = \int_{\frac{1}{x}}^{\sqrt{x}} \cos(t^2) dt, x > 0.$$

(Hint: Use the chain rule and the fundamental theorem of calculus.)

2. Find the following integrals.

1.
$$\int_0^1 \log(1+x) \, \mathrm{d}x$$
;

2.
$$\int_{-2}^{-1} \frac{1}{x^3} \, \mathrm{d}x;$$

3.
$$\int_{-a}^{a} e^{t} dt$$
 for $a \in \mathbb{R}$;

4.
$$\int_0^a t \cos(t^2) dt$$
 for $a > 0$.

3. Evaluate the following improper integrals if they are convergent (or establish their divergence).

$$1. \int_0^1 \log x \, \mathrm{d}x;$$

2.
$$\int_0^1 \frac{1}{\sin x} \, \mathrm{d}x;$$

3.
$$\int_0^\infty \sin t \, dt$$
;

4.
$$\int_0^\infty e^{\cos t} \sin t \, dt.$$

 $\boxed{\textbf{4.}}$ Prove the Cauchy-Schwarz inequality for regulated functions. Namely, if $f,g\in R[a,b]$, prove

$$\left(\int_a^b f(x)g(x)\mathrm{d}x\right)^2 \le \int_a^b f(x)^2 \mathrm{d}x \ \int_a^b g(x)^2 \mathrm{d}x.$$

(Hint: You can try a proof similar to that of Problem 4 in Assignment 1.)

5. Show that the set of discontinuities of $f \in R[a,b]$ is countable. (Hint: Check that the set of jumps of size $\frac{1}{n}$ is finite.)