Assignment 4

Due Monday 6 November 15:00. Two problems will be selected for marking among those with boxed numbers. There are 4 points for each of the two problems, and 2 points for presentation. Do not forget to write your name and your group (1: Tuesday 12-1/Atkinson; 2: Tuesday 2-3/Vasdekis; 3: Thursday 1-2/Archer; 4: Friday 12-1/Bowditch).

1. This problem is motivated by the Gamma function \(\Gamma(x) = \int_0^\infty t^{x-1}e^{-t}dt \). For given \(x \in \mathbb{R} \), consider \(f(t) = t^{x-1}e^{-t} \).

 1. For which values of \(x \) does the integral \(\int_0^1 f(t)dt \) exist?
 2. For which values of \(x \) does the Riemann integral \(\int_0^1 f(t)dt \) exist?
 3. For which values of \(x \) does the improper integral \(\int_0^\infty f(t)dt \) exist?

2. Find the following integrals.

 1. \(\int_0^1 \frac{\cos \sqrt{t}}{\sqrt{t}} dt \).
 2. \(\int_2^\infty t^{-2} \log t dt \).
 3. \(\int_2^\infty e^{-\sqrt{t}} dt \).
 4. \(\int_0^\pi e^{\sin^2 t} \sin t \cos t dt \).

3. Let \(f(x) = \int_0^x e^{-t^2} dt \). Find its derivative \(f'(x) \), and draw it for \(x \in (-\infty, \infty) \). For approximately which \(x \) is \(f \) maximum?

4. Find the pointwise limits of the following functions as \(n \to \infty \). Is the convergence uniform? Prove it!

 1. \(f_n(x) = x^{1/n} \) for \(x \in [0, 1] \).
 2. \(f_n(x) = \sin(x + \frac{1}{n}) \) for \(x \in \mathbb{R} \).
 3. \(f_n(x) = e^{n(\cos x - 1)} \) for \(x \in \mathbb{R} \).
 4. \(f_n(x) = e^{x/n} \) for \(x \in [0, 2\pi] \).

5. Find the pointwise limits of the following functions as \(n \to \infty \). Is the convergence uniform? Prove it!

 1. \(f_n(x) = \min(\cos x, 1 - \frac{1}{n}) \) for \(x \in \mathbb{R} \).
 2. \(f_n(x) = n \sin \frac{x}{n} \) for \(x \in \mathbb{R} \).
 3. \(f_n(x) = e^{-x/n} \) for \(x \in [0, \infty) \).
 4. \(f_n(x) = \lim_{m \to \infty} [\cos(n! \pi x)]^{2m} \) for \(x \in [0, 1] \).

6. Consider the functions \(f_n(x) = n^a x e^{-n^b x} \) on \([0, \infty) \), where \(a, b \) are fixed numbers. Find the pointwise limit as \(n \to \infty \). Draw a few functions, calculate the derivatives, and find the values of \(a, b \) for which the convergence is uniform.