Assignment 4

Due Monday 6 November 15:00. Two problems will be selected for marking among those with boxed numbers. There are **4 points** for each of the two problems, and **2 points** for presentation. Do not forget to write **your name** and **your group** (1: Tuesday 12-1/Atkinson; **2**: Tuesday 2-3/Vasdekis; **3**: Thursday 1-2/Archer; **4**: Friday 12-1/Bowditch).

1. This problem is motivated by the Gamma function $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$. For given $x \in \mathbb{R}$, consider $f(t) = t^{x-1} e^{-t}$.

- 1. For which values of x does the integral $\int_0^1 f(t)dt$ exist?
- 2. For which values of x does the Riemann integral $\int_0^1 f(t)dt$ exist?
- 3. For which values of x does the improper integral $\int_0^\infty f(t)dt$ exist?
- **2**. Find the following integrals.

$$1. \int_0^1 \frac{\cos\sqrt{t}}{\sqrt{t}} \, \mathrm{d}t.$$

$$2. \int_2^\infty t^{-2} \log t \, \mathrm{d}t.$$

$$3. \int_2^\infty e^{-\sqrt{t}} dt.$$

4.
$$\int_0^{\pi} e^{\sin^2 t} \sin t \cos t \, dt.$$

3. Let $f(x) = \int_x^{x^2} e^{-t^2} dt$. Find its derivative f'(x), and draw it for $x \in (-\infty, \infty)$. For approximately which x is f maximum?

4. Find the pointwise limits of the following functions as $n \to \infty$. Is the convergence uniform? Prove it!

1.
$$f_n(x) = x^{1/n}$$
 for $x \in [0, 1]$.

2.
$$f_n(x) = \sin(x + \frac{1}{n})$$
 for $x \in \mathbb{R}$

3.
$$f_n(x) = e^{n(\cos x - 1)}$$
 for $x \in \mathbb{R}$.

4.
$$f_n(x) = e^{x/n}$$
 for $x \in [0, 2\pi]$.

5. Find the pointwise limits of the following functions as $n \to \infty$. Is the convergence uniform? Prove it!

1.
$$f_n(x) = \min(\cos x, 1 - \frac{1}{n})$$
 for $x \in \mathbb{R}$.

2.
$$f_n(x) = n \sin \frac{x}{n}$$
 for $x \in \mathbb{R}$.

3.
$$f_n(x) = e^{-x/n}$$
 for $x \in [0, \infty)$.

4.
$$f_n(x) = \lim_{m \to \infty} [\cos(n!\pi x)]^{2m}$$
 for $x \in [0, 1]$.

6. Consider the functions $f_n(x) = n^a x e^{-n^b x}$ on $[0, \infty)$, where a, b are fixed numbers. Find the pointwise limit as $n \to \infty$. Draw a few functions, calculate the derivatives, and find the values of a, b for which the convergence is uniform.