# Uniqueness / non-uniqueness of Gibbs states

## Clarification for last week: decomposition of states

- · X/e need G to be a metrisable set in order to apply Choquet's theorem.
- The normalised linear Functionals on A are compact in wreak \* topology (Banach-Alacglu).
- · The subset of Gibbs states is closed, so it is compact.
- · The weak \* topology is not metrisable in general, but compact subsets are metrisable.
- Since we deal with weah & topology, the claim  $\zeta-\gamma = \int y(x) \mu(dy)$  means that  $\forall A \in \mathcal{R}$ , we have  $\langle A \rangle = \int y(A) \mu(dy)$ .

#### Recall basic models & their phase diagrams

$$H_{\Lambda,h} = -\sum_{xy \in \mathcal{E}_{\Lambda}} (J'S'_{x}S'_{y} + J^{2}S_{x}^{2}S'_{y} + J^{3}S_{x}S_{y}) - h\sum_{x \in \Lambda} S_{x}^{3}$$

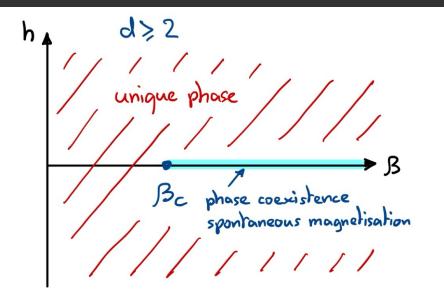


FIGURE 1.1. Phase diagram of the **Ising model**, and of the **XXZ** model for  $J^{(3)} > J^{(1)} = J^{(2)} \ge 0$ , for all dimensions  $d \ge 2$ .

$$H_{\Lambda,h} = -\sum_{xy \in \mathcal{E}_{\Lambda}} (J'S'_{x}S'_{y} + J^{2}S_{x}^{2}S'_{y} + J^{3}S_{x}S_{y}) - h\sum_{x \in \Lambda} S_{x}^{3}$$

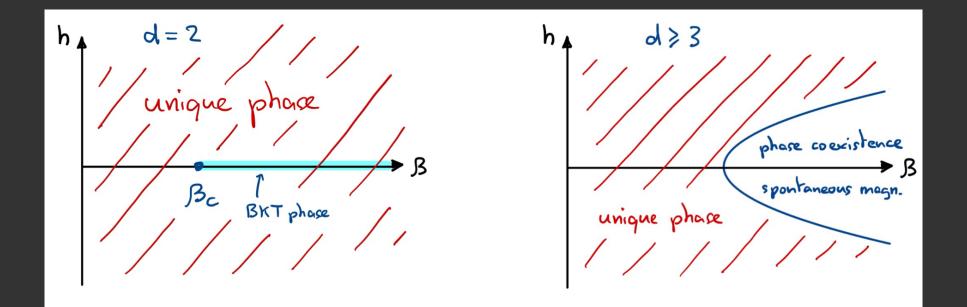


FIGURE 1.2. Phase diagrams of the **XXZ model** for  $J^{(1)} = J^{(2)} > |J^{(3)}|$ . The BKT phase is the Berezinsky-Kosterlitz-Thouless phase where the two point correlation function has power-law decay (in the unique phase, decay is exponential).

$$H_{\Lambda,h} = -\sum_{xy \in \mathcal{E}_{\Lambda}} (J'S'_{x}S'_{y} + J^{2}S_{x}^{2}S'_{y} + J^{3}S_{x}S_{y}) - h\sum_{x \in \Lambda} S_{x}^{3}$$

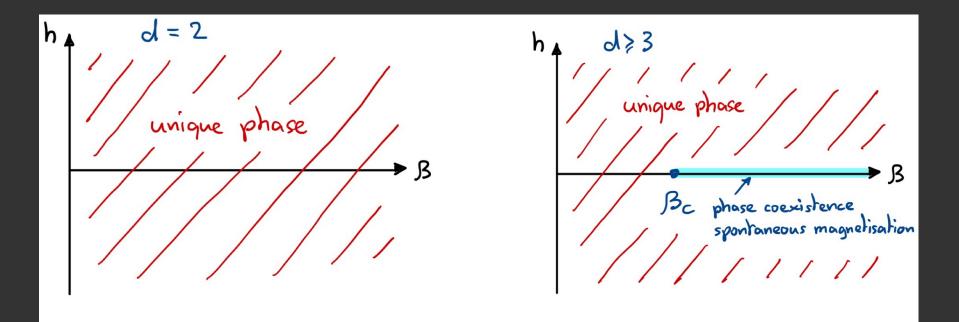


FIGURE 1.3. Phase diagrams of the **Heisenberg** or **XXX model** for which  $J^{(1)} = J^{(2)} = J^{(3)} \ge 0$ .

Next: a sufficient condition for uniqueness.

# A sufficient condition for uniqueness - high temperature

THEOREM 4.1. Assume that there exists r > 0 such that  $\|\Phi\|_r < \frac{r}{2}$  and that

$$\frac{\|\Phi\|_r}{r - 2\|\Phi\|_r} < e^{-r}.$$

Then the KMS state for the interaction  $\Phi$  is unique.

Remark: If we include B, the condition is that BIIOII, is small.

Method of proof: This form of the KMS condition:

$$p([A,B]) = p(B(\alpha; -1)A)$$
 $AB-BA$ 
 $B\alpha;(A)-BA$ 

Also useful: Hilbert-Schmidt inner product:

The induced norm is  $\|A\|_2 = \sqrt{\frac{1}{r}A^*A}$ .

$$\|\phi\|_{c} = \sum_{i=1}^{r} e^{(|X|-1)} \|\phi_{x}\|$$

$$\|\phi\|_{r} = \sup_{i \in \mathbb{Z}^{d}} \sum_{i \neq j} e^{(|X|-1)} \|\phi_{x}\|$$

$$|\phi|_{r} = \sup_{i \neq j} \sum_{i \neq j} e^{(|X|-1)} \|\phi_{x}\|$$

$$|\phi|_{r} = \sup_{i \neq j} \sum_{i \neq j} e^{(|X|-1)} \|\phi_{x}\|$$

$$|\phi|_{r} = \sup_{i \neq j} \sum_{i \neq j} e^{(|X|-1)} \|\phi_{x}\|$$

$$|\phi|_{r} = \sup_{i \neq j} \sum_{i \neq j} e^{(|X|-1)} \|\phi_{x}\|$$

$$|\phi|_{r} = \sup_{i \neq j} \sum_{i \neq j} e^{(|X|-1)} \|\phi_{x}\|$$

$$|\phi|_{r} = \sup_{i \neq j} \sum_{i \neq j} e^{(|X|-1)} \|\phi_{x}\|$$

$$|\phi|_{r} = \sup_{i \neq j} \sum_{i \neq j} e^{(|X|-1)} \|\phi_{x}\|$$

$$|\phi|_{r} = \sup_{i \neq j} \sum_{i \neq j} e^{(|X|-1)} \|\phi_{x}\|$$

$$|\phi|_{r} = \sup_{i \neq j} \sum_{i \neq j} e^{(|X|-1)} \|\phi_{x}\|$$

$$|\phi|_{r} = \sup_{i \neq j} \sum_{i \neq j} e^{(|X|-1)} \|\phi_{x}\|$$

$$|\phi|_{r} = \sup_{i \neq j} \sum_{i \neq j} e^{(|X|-1)} \|\phi_{x}\|$$

$$|\phi|_{r} = \sup_{i \neq j} \sum_{i \neq j} e^{(|X|-1)} \|\phi_{x}\|$$

$$|\phi|_{r} = \sup_{i \neq j} \sum_{i \neq j} e^{(|X|-1)} \|\phi_{x}\|$$

Basis For the space of hermitian matrices on CW:

$$(e^{(m)})_{m=0,...,N^2-1}$$

$$\begin{split} e^{(0)} &= 1 \\ |i\rangle\langle i| - |i+1\rangle\langle i+1| \quad \text{for } i = 1, \dots, N-1; \\ |i\rangle\langle j| + |j\rangle\langle i| \quad \text{for } 1 \leq i < j \leq N; \\ -i|i\rangle\langle j| + i|j\rangle\langle i| \quad \text{for } 1 \leq i < j \leq N. \end{split}$$

Then 
$$e^{(m)} = \frac{1}{2} [a^{(m)}, b^{(m)}] \quad m \geqslant 1$$

where 
$$11e^{(m)}11 = 11e^{(m)}11 = 11e^{(m)}$$

$$11e^{(m)}N_2 = 11a^{(m)}N_2 = 11b^{(m)}N_2 = \sqrt{\frac{2}{N}}$$

Def: 
$$\mathcal{A}_{\Lambda,\times}^{(m)}$$
: operators of the form

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & -1 & 0 \end{pmatrix} \leftarrow \bar{i}$$

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$\bar{i} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$\mathcal{A}_{\Lambda,x} = \mathcal{A}_{\Lambda \cup X}$$

#### Proof of uniqueness theorem.

Let  $g^{(0)}$ , g be two KMS states. We show that  $g^{(0)}(A) = g(A) \quad \forall A \in \mathcal{A}_{\Lambda, \times}^{(m)}, \quad \forall \Lambda, \times, m$ 

By induction on 1, m.

Case 
$$\Lambda = \emptyset$$
,  $x = 0$ ,  $m = 0$ :  $A_{\emptyset,0}^{(0)} = \{c1: c \in \mathbb{R}\}$ 

Then 
$$p(c1) = c = p^{(0)}(c1)$$
.

We now consider  $\mathcal{F}_{\Lambda,\times}$ .

$$A = \sum_{j=1}^{k} \underbrace{A_{j}}_{\in \mathcal{A}_{\Lambda}^{(m)}} \otimes \underbrace{B_{j}}_{\in \mathcal{A}_{\emptyset,x}^{(m+1)}} = \underbrace{\sum_{j=1}^{k} A_{j} \otimes B_{j}'}_{\equiv A' \in \mathcal{A}_{\Lambda,x}^{(m)}} + \underbrace{\sum_{j=1}^{k} c_{j} A_{j} \otimes e_{x}^{(m+1)}}_{\equiv A'' \in \mathcal{A}_{\Lambda}}$$
$$= A' + A'' \otimes e_{x}^{(m+1)}.$$

$$\begin{split} \rho(A) &= \rho(A') + \rho(A'' \otimes e_x^{(m+1)}) & \qquad \frac{1}{2} \left[ 1 \otimes \alpha_x^{(m+1)}, A \otimes b_x^{(m+1)} \right] \\ &= \rho^{(0)}(A') + \rho(\frac{1}{2}A'' \otimes [a_x^{(m+1)}, b_x^{(m+1)}]) \\ &\stackrel{\text{KMS}}{=} \rho^{(0)}(A') + \rho(\frac{1}{2}(A'' \otimes b_x^{(m+1)})(\alpha_{\mathbf{i}} - 1)(1_{\Lambda} \otimes a_x^{(m+1)})). \end{split}$$

Let 
$$p_o(A) = p^{(o)}(A'),$$
  

$$(K\emptyset)(A) = \emptyset(\frac{1}{2}(A''\otimes b_x^{(m+1)})(\alpha; -1)(1\otimes b_x^{(m+1)}))$$

The equation is 
$$p(A) = g_0(A) + (Kp)(A)$$

Consider 
$$K: \mathcal{L}(\mathcal{A}_{\Lambda,\times}^{(m+1)}, \|\cdot\|_2) \longrightarrow self.$$

Then 
$$\| \emptyset \| = \sup_{\|A\|_2 = 1} | \emptyset(A)|_{L^2}$$
 then  $| \emptyset(A)| \leq \| \emptyset \| \|A\|_2$ 

$$|(K\phi)(A)| \leq \frac{1}{2} \|\phi\| \|((A'' \otimes b_x^{(m+1)})(\alpha_{\mathbf{i}} - 1)(1_{\Lambda} \otimes a_x^{(m+1)})\|_{2}$$

$$\leq \frac{1}{2} \|\phi\| \|A''\|_{2} \|b_x^{(m+1)}\|_{2} e^{r} \frac{2\|\Phi\|_{r}}{r - 2\|\Phi\|_{r}} \|a_x^{(m+1)}\|.$$

This uses

$$\left| \|(\alpha_{\mathbf{i}} - 1)(1_{\Lambda} \otimes a_x^{(m+1)})\| \le e^r \frac{2\|\Phi\|_r}{r - 2\|\Phi\|_r} \|a_x^{(m+1)}\|.$$

Using 
$$\|A''\|_2 \leq \int_{\frac{N}{2}}^{N} \|A\|_2$$
,  $\|b_x^{(mn)}\| = \sqrt{\frac{2}{N}}$ ,  $\|a_x^{(mn)}\| = 1$ , we get

$$|(K\phi)(A)| \le ||\phi|| \, ||A||_2 e^r \, \frac{||\Phi||_r}{r - 2||\Phi||_r}.$$

Then IKII < 1.



#### Long-range order in XXZ model

- 1) Peierls argument for Ising
- 2) Kennedy's extension to XXZ with any ]3>]'=]2.

Note: long-range order => not mixing => Gibbs state not extremal

#### Ising hamiltonian:

$$H_{\Lambda}^{\text{ISING}} = -2 \sum_{xy \in \mathcal{E}(\Lambda)} (S_x^{(3)} S_y^{(3)} - \frac{1}{4}) = -\frac{1}{2} \sum_{xy \in \mathcal{E}(\Lambda)} (\sigma_x^{(3)} \sigma_y^{(3)} - 1).$$

Recall that 
$$3l_{\Lambda} = \otimes \mathbb{C}^2 \simeq \ell^2(\{-1,1\}^{\Lambda})$$
.

Probability measure on classical configurations:

$$\mathbb{P}_{\Lambda}(\omega) = \frac{1}{Z_{\Lambda}} \exp\left(\frac{1}{2}\beta \sum_{xy \in \mathcal{E}(\Lambda)} (\omega_x \omega_y - 1)\right),\,$$

Then:

$$\langle \sigma_x^{(3)} \sigma_y^{(3)} \rangle_{\Lambda} = \mathbb{E}_{\Lambda} [\omega_x \omega_y].$$

Here: 
$$\Lambda = \{-N, ..., N\}^d$$

$$\langle \sigma_{x}^{(3)} \sigma_{y}^{(3)} \rangle = \langle \sigma_{x}^{(3)} \sigma_{y}^{(3)} \rangle - \langle \sigma_{x}^{(3)} \rangle \langle \sigma_{y}^{(3)} \rangle$$

### Occurrence of long-range order

THEOREM 4.2. Consider the model (4.13) with  $d \ge 2$ . There exist  $\beta_0 < \infty$  and  $c(\beta) > 0$  (that depend on d but not on N) such that for  $\beta > \beta_0$ , we have

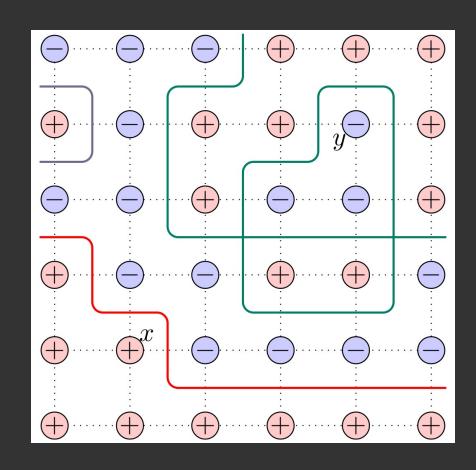
$$\langle \sigma_x^{(3)} \sigma_y^{(3)} \rangle_{\Lambda} \ge c \tag{4.18}$$

for all  $x, y \in \Lambda_N$ .

Proof.

Contour representation:





$$Z_{\Lambda,\beta} = \text{Tr } e^{-\beta H_{\Lambda}^{\text{ISING}}} = 2 \sum_{g \in G_{\Lambda}} \prod_{\gamma \in g} w(\gamma).$$

where the weights of the contours are  $w(\gamma) = \mathrm{e}^{-\beta|\gamma|}$ ,  $1_{w_x=w_\gamma} - 1_{w_x\neq w_\gamma} = 1 - 2 \cdot 1_{w_x\neq w_\gamma}$ 

$$\left|\langle \sigma_x^{(3)} \sigma_y^{(3)} \rangle_{\Lambda} = \mathbb{E}_{\Lambda}[\omega_x \omega_y] = 1 - 2\mathbb{P}_{\Lambda}(\omega_x \neq \omega_y).\right|$$

$$\begin{split} \mathbb{P}_{\Lambda}(\omega_{x} \neq \omega_{y}) & \leq \frac{2}{Z_{\Lambda,\beta}} \sum_{\substack{g \in G_{\Lambda} \\ x,y \text{ separated}}} \prod_{\gamma \in g} w(\gamma) \\ & \leq \frac{2}{Z_{\Lambda,\beta}} \left( \sum_{\gamma_{0}: \operatorname{Int}\gamma_{0} \ni x} w(\gamma_{0}) \sum_{g:g \cup \{\gamma_{0}\} \in G_{\Lambda}} \prod_{\gamma \in g} w(\gamma) + [\text{same with } y] \right). \end{split}$$

I interior of yo

$$\left| \frac{2}{Z_{\Lambda,\beta}} \sum_{g:g \cup \{\gamma_0\} \in G_{\Lambda}} \prod_{\gamma \in g} w(\gamma) \le 1. \right|$$

$$\mathbb{P}_{\Lambda}(\omega_x \neq \omega_y) \leq \sum_{\gamma_0: \operatorname{Int}\gamma_0 \ni x} w(\gamma_0) + \sum_{\gamma_0: \operatorname{Int}\gamma_0 \ni y} w(\gamma_0).$$



#### Dx(x0): length of shortest path between x and x0

$$\sum_{\gamma_0: \operatorname{Int}\gamma_0 \ni x} w(\gamma_0) \le \sum_{\gamma_0 \in \Gamma_{\Lambda}} e^{-(\beta - \log \delta)|\gamma_0|} \delta^{-D_x(\gamma_0)}. \quad \forall \quad S \ge 1$$

De(g) { 1x01

We now estimate the sum over contours:

$$\sum_{\gamma_0 \in \Gamma_{\Lambda}} e^{-(\beta - \log \delta)|\gamma_0|} \delta^{-D_x(\gamma_0)} \le \left(\frac{2}{\delta - 1}\right)^d \left(c_d^{-1} e^{\beta - \log \delta} - 1\right)^{-1}.$$

We get a bound for the probability that wx = wy, hence for <53 53 >:

$$\mathbb{P}_{\Lambda}(\omega_x \neq \omega_y) \leq 2\left(\frac{2}{\delta - 1}\right)^d \left(c_d^{-1} e^{\beta - \log \delta} - 1\right)^{-1}.$$