List of publications

Recent articles

A two-table theorem for a disordered Chinese restaurant process, with Jakob E. Björnberg, Cécile Mailler, Peter Mörters
pdf file, arXiv:2303.12623
Poisson-Dirichlet distributions and weakly first-order spin-nematic phase transitions, with N. Caci, P. Mühlbacher, S. Wessel
pdf file, arXiv:2209.01055
Reflection positivity and infrared bounds for quantum spin systems, with J. E. Björnberg,
pdf file,
Dimerization in quantum spin chains with O(n) symmetry, with J. E. Björnberg, P. Mühlbacher, B. Nachtergaele, Commun. Math. Phys. 387, 1151-1189 (2021)
pdf file, DOI:10.1007/s00220-021-04148-1, arXiv:2101.11464
Characterising random partitions by random colouring, with J. E. Björnberg, C. Mailler, P. Mörters, Electron. Commun. Probab. 25, no. 4, 1–12 (2020)
pdf file, DOI:10.1214/19-ECP283, arXiv:1907.05960
Quantum spins and random loops on the complete graph, with J. E. Björnberg, J. Fröhlich, Commun. Math. Phys. 375, 1629-1663 (2020)
pdf file, DOI:10.1007/s00220-019-03634-x, arXiv:1811.12834
Loop correlations in random wire models, with C. Benassi, Commun. Math. Phys. 374, 525-547 (2020)
pdf file, DOI:10.1007/s00220-019-03474-9, arXiv:1807.06564

Refereed publications

[44]Critical temperature of Heisenberg models on regular trees, via random loops, with J. E. Björnberg, J. Statist. Phys. 173, 1369-1385 (2018)
pdf file, DOI:10.1007/s10955-018-2154-2, arXiv:1803.11430, MathSciNet
[43]A direct proof of dimerization in a family of SU(n)-invariant quantum spin chains, with B. Nachtergaele, Lett. Math. Phys. 107, 1629-1647 (2017)
pdf file, DOI:10.1007/s11005-017-0960-0, arXiv:1701.03983, MathSciNet
[42]Decay of correlations in 2D quantum systems with continuous symmetry, with C. Benassi, J. Fröhlich, Ann. Henri Poincaré 18, 2831-2847 (2017)
pdf file, DOI:10.1007/s00023-017-0571-4, arXiv:1612.02478, MathSciNet
[41]Critical parameter of random loop model on trees, with J. E. Björnberg, Ann. Appl. Probab. 28, 2063-2082 (2018)
pdf file, DOI:10.1214/17-AAP1315, arXiv:1608.08473, MathSciNet
[40]Correlation inequalities for the quantum XY model, with C. Benassi, B. Lees, J. Stat. Phys. 164, 1157-1166 (2016)
pdf file, DOI:10.1007/s10955-016-1580-2,, MathSciNet
[39]Condensation and symmetry-breaking in the zero-range process with weak site disorder, with C. Mailler, P. Mörters, Stoch. Proc. Appl. 126, 3283-3309 (2016)
pdf file, DOI:10.1016/, arXiv:1509.07672, MathSciNet
[38]Singularity analysis for heavy-tailed random variables, with N. M. Ercolani, S. Jansen, J. Theor. Probab. 32, 1-46 (2019)
pdf file, DOI:10.1007/s10959-018-0832-2, arXiv:1509.05199, MathSciNet
[37]The random interchange process on the hypercube, with R. Kotecký, P. Miłoś, Electron. Commun. Probab. 21, no. 4 (2016)
pdf file, DOI:10.1214/16-ECP4540, arXiv:1509.02067, MathSciNet
[36]A numerical study of the 3D random interchange and random loop models, with A. Barp, E. G. Barp, F.-X. Briol, J. Phys. A 48, 345002 (2015)
pdf file, DOI:10.1088/1751-8113/48/34/345002, arXiv:1505.00983, MathSciNet
[35]Decay of transverse correlations in quantum Heisenberg models, with J. E. Björnberg, J. Math. Phys. 56, 043303 (2015)
pdf file, DOI:10.1063/1.4918675, arXiv:1501.02109, MathSciNet
[34]Some properties of correlations of quantum lattice systems in thermal equilibrium, with J. Fröhlich, J. Math. Phys. 56, 053302 (2015)
pdf file, DOI:10.1063/1.4921305, arXiv:1412.2534, MathSciNet
[33]Ferromagnetism, antiferromagnetism, and the curious nematic phase of S=1 quantum spin systems, Phys. Rev. E 91, 042132 (2015)
pdf file, DOI:10.1103/PhysRevE.91.042132, arXiv:1406.2366, MathSciNet
[32]Random partitions in statistical mechanics, with N. M. Ercolani, S. Jansen, Electron. J. Probab. 19, no. 82, 1-37 (2014)
pdf file, DOI:10.1214/EJP.v19-3244, arXiv:1401.1442, MathSciNet
[31]Multispecies virial expansions, with S. Jansen, S. J. Tate, D. Tsagkarogiannis, Commun. Math. Phys. 330, 801-817 (2014)
pdf file, DOI:10.1007/s00220-014-2026-9, arXiv:1304.2199, MathSciNet
[30]Random loop representations for quantum spin systems, J. Math. Phys. 54, 083301 (2013)
pdf file, DOI:10.1063/1.4817865, arxiv:1301.0811, MathSciNet
[29]Lattice permutations and Poisson-Dirichlet distribution of cycle lengths, with S. Grosskinsky, A. A. Lovisolo, J. Statist. Phys. 146, 1105-1121 (2012)
pdf file, DOI:10.1007/s10955-012-0450-9, arxiv:1107.5215, MathSciNet
[28]Quantum Heisenberg models and their probabilistic representations, with C. Goldschmidt, P. Windridge, in Entropy & the Quantum II, Contemporary Mathematics 552, 177-224 (2011)
pdf file, DOI:10.1090/conm/552, arxiv:1104.0983, MathSciNet
[27]Cycle structure of random permutations with cycle weights, with N. M. Ercolani, Random Struct. Algor. 44, 109-133 (2014)
pdf file, DOI:10.1002/rsa.20430, arxiv:1102.4796, MathSciNet
[26]Spatial random permutations and Poisson-Dirichlet law of cycle lengths, with V. Betz, Electr. J. Probab. 16, 1173-1192 (2011)
pdf file, DOI:10.1214/EJP.v16-901, arxiv:1007.2224, MathSciNet
[25]Critical temperature of dilute Bose gases, with V. Betz, Phys. Rev. A 81, 023611 (2010)
pdf file, DOI:10.1103/PhysRevA.81.023611, arxiv:0910.3558
[24]Random permutations with cycle weights, with V. Betz, Y. Velenik, Ann. Appl. Probab. 21, 312-331 (2011)
pdf file, DOI:10.1214/10-AAP697, arxiv:0908.2217, MathSciNet
[23]Rigorous upper bound on the critical temperature of dilute Bose gases, with R. Seiringer, Phys. Rev. B 80, 014502 (2009)
pdf file, DOI:10.1103/PhysRevB.80.014502, arxiv:0904.0050
[22]Spatial random permutations with small cycle weights, with V. Betz, Probab. Th. Rel. Fields 149, 191-222 (2011)
pdf file, DOI:10.1007/s00440-009-0248-0, arxiv:0812.0569, MathSciNet
[21]Abstract cluster expansion with applications to statistical mechanical systems, with S. Poghosyan, J. Math. Phys. 50, 053509 (2009)
pdf file, DOI:10.1063/1.3124770, arxiv:0811.4281, MathSciNet
[20]Spatial random permutations and infinite cycles, with V. Betz, Commun. Math. Phys. 285, 469-501 (2009)
pdf file, DOI:10.1007/s00220-008-0584-4, arxiv:0711.1188, MathSciNet
[19]On a model of random cycles, with D. Gandolfo, J. Ruiz, J. Statist. Phys. 129, 663-676 (2007)
pdf file, DOI:10.1007/s10955-007-9410-1, cond-mat/0703315, MathSciNet
[18]Feynman cycles in the Bose gas, J. Math. Phys. 47, 123303 (2006)
pdf file, DOI:10.1063/1.2383008, math-ph/0605002, MathSciNet
[17]Relation between Feynman cycles and off-diagonal long-range order, Phys. Rev. Lett. 97, 170601 (2006)
pdf file, DOI:10.1103/PhysRevLett.97.170601, cond-mat/0604005, MathSciNet
[16]Mott transition in lattice boson models, with R. Fernández, J. Fröhlich, Commun. Math. Phys. 266, 777-795 (2006)
pdf file, DOI:10.1007/s00220-006-0038-9, math-ph/0509060, MathSciNet
[15]Hund's rule and metallic ferromagnetism, with J. Fröhlich, J. Statist. Phys. 118, 973-996 (2005)
pdf file, DOI:10.1007/s10955-004-2174-y, cond-mat/0404483, MathSciNet
[14]Segregation in the asymmetric Hubbard model, J. Statist. Phys. 116, 681-697 (2004)
pdf file, DOI:10.1023/B:JOSS.0000037231.88815.04, math-ph/0311049, MathSciNet
[13]Cluster expansions & correlation functions, Moscow Math. J. 4, 511-522 (2004)
pdf file, math-ph/0304003, MathSciNet
[12]Statistical mechanics of thermodynamic processes, with J. Fröhlich, M. Merkli, S. Schwarz, in A garden of quanta, 345--363, World Scientific (2003)
pdf file, math-ph/0410013, MathSciNet
[11]Dissipative transport: Thermal contacts and tunnelling junctions, with J. Fröhlich, M. Merkli, Ann. Henri Poincaré 4, 897-945 (2003)
pdf file, DOI:10.1007/s00023-003-0150-8, math-ph/0212062, MathSciNet
[10]A self-avoiding walk with attractive interactions, Probab. Th. Rel. Fields 124, 189-203 (2002)
pdf file, DOI:10.1007/s004400200209, math.PR/0202248, MathSciNet
[9]Phase separation due to quantum mechanical correlations, with J. K. Freericks, E. H. Lieb, Phys. Rev. Lett. 88, 106401 (2002)
pdf file, DOI:10.1103/PhysRevLett.88.106401, cond-mat/0110251
[8]Segregation in the Falicov-Kimball model, with J. K. Freericks, E. H. Lieb, Commun. Math. Phys. 227 (2002)
pdf file, DOI:10.1007/s002200200632, math-ph/0107003, MathSciNet
[7]Quantum lattice models at intermediate temperatures, with J. Fröhlich, L. Rey-Bellet, Commun. Math. Phys. 224, 33-63 (2001)
pdf file, DOI:10.1007/s002200100530, math-ph/0012011, MathSciNet
[6]Planar and lamellar antiferromagnetisms in Hubbard models, with Ch. Gruber, R. Kotecký, J. Phys. A 33, 7857-7871 (2000)
pdf file, DOI:10.1088/0305-4470/33/44/302, MathSciNet
[5]Analyticity in Hubbard models, J. Statist. Phys. 95, 693-717 (1999)
pdf file, DOI:10.1023/A:1004599410952, cond-mat/9810320, MathSciNet
[4]Effective interactions due to quantum fluctuations, with R. Kotecký, Commun. Math. Phys. 206, 289-335 (1999)
pdf file, DOI:10.1007/s002200050707, cond-mat/9804047, MathSciNet
[3]Ground states and flux configurations of the two-dimensional Falicov-Kimball model, with Ch. Gruber, N. Macris, A. Messager, J. Statist. Phys. 86, 57-108 (1997)
pdf file, DOI:10.1007/BF02180199, cond-mat/9511092, MathSciNet
[2]Low temperature phase diagrams for quantum perturbations of classical spin systems, with C. Borgs, R. Kotecký, Commun. Math. Phys. 181, 409-446 (1996)
pdf file, DOI:10.1007/BF02101010, MathSciNet
[1]Molecule formation and the Farey tree in the one-dimensional Falicov-Kimball model, with Ch. Gruber, J. Jędrzejewski, J. Statist. Phys. 76, 125-157 (1994)
pdf file, DOI:10.1007/BF02188658, cond-mat/9311015

Proceedings and other publications

[18]An improved tree-graph bound, Oberwolfach Rep. 14 (2017), in: Miniworkshop: Cluster expansions: From Combinatorics to Analysis through Probability (R. Fernandez, S. Jansen, D. Tsagkarogiannis, eds.) (2017)
pdf file, DOI:10.4171/OWR/2017/8, arXiv:1705.05353
[17]Universal behaviour of 3D loop soup models, in 6th Warsaw School of Statistical Physics, B. Cichocki, M. Napiórkowski, J. Piasecki, P. Szymczak eds, Warsaw University Press (2017)
pdf file, arXiv:1703.09503
[16]Correlation inequalities for classical and quantum XY models, with C. Benassi, B. Lees, Advances in Quantum Mechanics, A. Michelangeli, G. Dell Antonio (eds.), Springer INdAM Series 18, pp. 15-31 (2017)
pdf file, DOI:10.1007/978-3-319-58904-6_2, arXiv:1611.06019, MathSciNet
[15]Graphical representations for quantum spin systems, Birmingham lectures (2014)
pdf file
[14]Quantum spin correlations and random loops, in Mathematical Results in Quantum Mechanics, P. Exner, W. König, H. Neidhardt eds, pp 77-88, World Scientific (2015)
pdf file, arXiv:1404.1595, MathSciNet
[13]Quantum spin systems and phase transitions, Marseille lectures (2013)
pdf file
[12]Quantum Heisenberg models and random loop representations, in XVIIth International Congress on Mathematical Physics, Arne Jensen (ed.), 351-361, World Scientific (2013)
pdf file, arXiv:1211.4141, MathSciNet
[11]Phase transitions in classical and quantum Heisenberg models, Tübingen lectures (2012)
pdf file
[10]Entropy & the Quantum II, with R. Sims, Contemporary Mathematics 552 (2011)
pdf file, DOI:10.1090/conm/552, contents available here, MathSciNet
[9]Entropy & the Quantum, with R. Sims, Contemporary Mathematics 529 (2010)
pdf file, contents available here, MathSciNet
[8]The model of interacting spatial permutations and its relation to the Bose gas, in Mathematical Results in Quantum Mechanics, pp 255-272, World Scientific (2008)
pdf file, arxiv:0712.2443, MathSciNet
[7]The Falicov-Kimball model, with Ch. Gruber, in Encyclopedia of mathematical physics, Elsevier (2006)
pdf file, math-ph/0502041
[6]Geometric and probabilistic aspects of boson lattice models, in In and out of equilibrium: Physics with a probability flavor, Progr. Probab. 51, 363-391, Birkhäuser (2002)
pdf file, math-ph/0103002, MathSciNet
[5]Hubbard model with magnetic field: antiferromagnetism and paramagnetism, with R. Kotecký, in Mathematical results in statistical mechanics, pp 223-238, World Scientific (1999)
, MathSciNet
[4]Discontinuous phase transitions in quantum lattice systems, PhD thesis, École Polytechnique fédérale de Lausanne (1998)
pdf file
[3]Incompressible phase in lattice systems of interacting bosons, with C. Borgs, R. Kotecký, unpublished (1997)
pdf file
[2]Falicov-Kimball model: ground states and flux phase, with Ch. Gruber, in Statistical models, Yang-Baxter equation and related topics, pp 118-125, World Scientific (1996)
, MathSciNet
[1]Flux phase problem in the 2-D Falicov-Kimball model, with Ch. Gruber, Physica A 232, 616-624 (1996)