List of publications


Recent articles

Universal behaviour of 3D loop soup models
pdf file, arXiv:1703.09503
A direct proof of dimerization in a family of SU(n)-invariant quantum spin chains, with B. Nachtergaele, Lett. Math. Phys. ?? (2017)
pdf file, DOI:10.1007/s11005-017-0960-0, arXiv:1701.03983
Decay of correlations in 2D quantum systems with continuous symmetry, with C. Benassi, J. Fröhlich, Ann. Henri Poincaré 18, 2831-2847 (2017)
pdf file, DOI:10.1007/s00023-017-0571-4, arXiv:1612.02478
Critical parameter of random loop model on trees, with Jakob Björnberg
pdf file, arXiv:1608.08473
Correlation inequalities for the quantum XY model, with C. Benassi, B. Lees, J. Stat. Phys. 164, 1157-1166 (2016)
pdf file, DOI:10.1007/s10955-016-1580-2, arXiv.org/1510.03215
Condensation and symmetry-breaking in the zero-range process with weak site disorder, with C. Mailler, P. Mörters, Stoch. Proc. Appl. 126, 3283-3309 (2016)
pdf file, DOI:10.1016/j.spa.2016.04.028, arXiv:1509.07672
Singularity analysis for heavy-tailed random variables, with N. M. Ercolani, S. Jansen
pdf file, arXiv:1509.05199

Refereed publications

[37]The random interchange process on the hypercube, with R. Kotecký, P. Miłoś, Electron. Commun. Probab. 21, no. 4 (2016)
pdf file, DOI:10.1214/16-ECP4540, arXiv:1509.02067, MathSciNet
[36]A numerical study of the 3D random interchange and random loop models, with A. Barp, E. G. Barp, F.-X. Briol, J. Phys. A 48, 345002 (2015)
pdf file, DOI:10.1088/1751-8113/48/34/345002, arXiv:1505.00983, MathSciNet
[35]Decay of transverse correlations in quantum Heisenberg models, with J. E. Björnberg, J. Math. Phys. 56, 043303 (2015)
pdf file, DOI:10.1063/1.4918675, arXiv:1501.02109, MathSciNet
[34]Some properties of correlations of quantum lattice systems in thermal equilibrium, with J. Fröhlich, J. Math. Phys. 56, 053302 (2015)
pdf file, DOI:10.1063/1.4921305, arXiv:1412.2534, MathSciNet
[33]Ferromagnetism, antiferromagnetism, and the curious nematic phase of S=1 quantum spin systems, Phys. Rev. E 91, 042132 (2015)
pdf file, DOI:10.1103/PhysRevE.91.042132, arXiv:1406.2366, MathSciNet
[32]Random partitions in statistical mechanics, with N. M. Ercolani, S. Jansen, Electron. J. Probab. 19, no. 82, 1-37 (2014)
pdf file, DOI:10.1214/EJP.v19-3244, arXiv:1401.1442, MathSciNet
[31]Multispecies virial expansions, with S. Jansen, S. J. Tate, D. Tsagkarogiannis, Commun. Math. Phys. 330, 801-817 (2014)
pdf file, DOI:10.1007/s00220-014-2026-9, arXiv:1304.2199, MathSciNet
[30]Random loop representations for quantum spin systems, J. Math. Phys. 54, 083301 (2013)
pdf file, DOI:10.1063/1.4817865, arxiv:1301.0811, MathSciNet
[29]Lattice permutations and Poisson-Dirichlet distribution of cycle lengths, with S. Grosskinsky, A. A. Lovisolo, J. Statist. Phys. 146, 1105-1121 (2012)
pdf file, DOI:10.1007/s10955-012-0450-9, arxiv:1107.5215, MathSciNet
[28]Quantum Heisenberg models and their probabilistic representations, with C. Goldschmidt, P. Windridge, in Entropy & the Quantum II, Contemporary Mathematics 552, 177-224 (2011)
pdf file, DOI:10.1090/conm/552, arxiv:1104.0983, MathSciNet
[27]Cycle structure of random permutations with cycle weights, with N. M. Ercolani, Random Struct. Algor. 44, 109-133 (2014)
pdf file, DOI:10.1002/rsa.20430, arxiv:1102.4796, MathSciNet
[26]Spatial random permutations and Poisson-Dirichlet law of cycle lengths, with V. Betz, Electr. J. Probab. 16, 1173-1192 (2011)
pdf file, DOI:10.1214/EJP.v16-901, arxiv:1007.2224, MathSciNet
[25]Critical temperature of dilute Bose gases, with V. Betz, Phys. Rev. A 81, 023611 (2010)
pdf file, DOI:10.1103/PhysRevA.81.023611, arxiv:0910.3558
[24]Random permutations with cycle weights, with V. Betz, Y. Velenik, Ann. Appl. Probab. 21, 312-331 (2011)
pdf file, DOI:10.1214/10-AAP697, arxiv:0908.2217, MathSciNet
[23]Rigorous upper bound on the critical temperature of dilute Bose gases, with R. Seiringer, Phys. Rev. B 80, 014502 (2009)
pdf file, DOI:10.1103/PhysRevB.80.014502, arxiv:0904.0050
[22]Spatial random permutations with small cycle weights, with V. Betz, Probab. Th. Rel. Fields 149, 191-222 (2011)
pdf file, DOI:10.1007/s00440-009-0248-0, arxiv:0812.0569, MathSciNet
[21]Abstract cluster expansion with applications to statistical mechanical systems, with S. Poghosyan, J. Math. Phys. 50, 053509 (2009)
pdf file, DOI:10.1063/1.3124770, arxiv:0811.4281, MathSciNet
[20]Spatial random permutations and infinite cycles, with V. Betz, Commun. Math. Phys. 285, 469-501 (2009)
pdf file, DOI:10.1007/s00220-008-0584-4, arxiv:0711.1188, MathSciNet
[19]On a model of random cycles, with D. Gandolfo, J. Ruiz, J. Statist. Phys. 129, 663-676 (2007)
pdf file, DOI:10.1007/s10955-007-9410-1, cond-mat/0703315, MathSciNet
[18]Feynman cycles in the Bose gas, J. Math. Phys. 47, 123303 (2006)
pdf file, DOI:10.1063/1.2383008, math-ph/0605002, MathSciNet
[17]Relation between Feynman cycles and off-diagonal long-range order, Phys. Rev. Lett. 97, 170601 (2006)
pdf file, DOI:10.1103/PhysRevLett.97.170601, cond-mat/0604005, MathSciNet
[16]Mott transition in lattice boson models, with R. Fernández, J. Fröhlich, Commun. Math. Phys. 266, 777-795 (2006)
pdf file, DOI:10.1007/s00220-006-0038-9, math-ph/0509060, MathSciNet
[15]Hund's rule and metallic ferromagnetism, with J. Fröhlich, J. Statist. Phys. 118, 973-996 (2005)
pdf file, DOI:10.1007/s10955-004-2174-y, cond-mat/0404483, MathSciNet
[14]Segregation in the asymmetric Hubbard model, J. Statist. Phys. 116, 681-697 (2004)
pdf file, DOI:10.1023/B:JOSS.0000037231.88815.04, math-ph/0311049, MathSciNet
[13]Cluster expansions & correlation functions, Moscow Math. J. 4, 511-522 (2004)
pdf file, math-ph/0304003, MathSciNet
[12]Statistical mechanics of thermodynamic processes, with J. Fröhlich, M. Merkli, S. Schwarz, in A garden of quanta, 345--363, World Scientific (2003)
pdf file, math-ph/0410013, MathSciNet
[11]Dissipative transport: Thermal contacts and tunnelling junctions, with J. Fröhlich, M. Merkli, Ann. Henri Poincaré 4, 897-945 (2003)
pdf file, DOI:10.1007/s00023-003-0150-8, math-ph/0212062, MathSciNet
[10]A self-avoiding walk with attractive interactions, Probab. Th. Rel. Fields 124, 189-203 (2002)
pdf file, DOI:10.1007/s004400200209, math.PR/0202248, MathSciNet
[9]Phase separation due to quantum mechanical correlations, with J. K. Freericks, E. H. Lieb, Phys. Rev. Lett. 88, 106401 (2002)
pdf file, DOI:10.1103/PhysRevLett.88.106401, cond-mat/0110251
[8]Segregation in the Falicov-Kimball model, with J. K. Freericks, E. H. Lieb, Commun. Math. Phys. 227 (2002)
pdf file, DOI:10.1007/s002200200632, math-ph/0107003, MathSciNet
[7]Quantum lattice models at intermediate temperatures, with J. Fröhlich, L. Rey-Bellet, Commun. Math. Phys. 224, 33-63 (2001)
pdf file, DOI:10.1007/s002200100530, math-ph/0012011, MathSciNet
[6]Planar and lamellar antiferromagnetisms in Hubbard models, with Ch. Gruber, R. Kotecký, J. Phys. A 33, 7857-7871 (2000)
pdf file, DOI:10.1088/0305-4470/33/44/302, MathSciNet
[5]Analyticity in Hubbard models, J. Statist. Phys. 95, 693-717 (1999)
pdf file, DOI:10.1023/A:1004599410952, cond-mat/9810320, MathSciNet
[4]Effective interactions due to quantum fluctuations, with R. Kotecký, Commun. Math. Phys. 206, 289-335 (1999)
pdf file, DOI:10.1007/s002200050707, cond-mat/9804047, MathSciNet
[3]Ground states and flux configurations of the two-dimensional Falicov-Kimball model, with Ch. Gruber, N. Macris, A. Messager, J. Statist. Phys. 86, 57-108 (1997)
pdf file, DOI:10.1007/BF02180199, cond-mat/9511092, MathSciNet
[2]Low temperature phase diagrams for quantum perturbations of classical spin systems, with C. Borgs, R. Kotecký, Commun. Math. Phys. 181, 409-446 (1996)
pdf file, DOI:10.1007/BF02101010, MathSciNet
[1]Molecule formation and the Farey tree in the one-dimensional Falicov-Kimball model, with Ch. Gruber, J. Jędrzejewski, J. Statist. Phys. 76, 125-157 (1994)
pdf file, DOI:10.1007/BF02188658, cond-mat/9311015

Proceedings and other publications

[17]An improved tree-graph bound, Oberwolfach Report No. 8/2017 (2017)
pdf file, DOI:10.4171/OWR/2017/8, arXiv:1705.05353
[16]Correlation inequalities for classical and quantum XY models, with C. Benassi, B. Lees, Advances in Quantum Mechanics, A. Michelangeli, G. Dell Antonio (eds.), Springer INdAM Series 18, pp. 15-31 (2017)
pdf file, DOI:10.1007/978-3-319-58904-6_2, arXiv:1611.06019
[15]Graphical representations for quantum spin systems, Birmingham lectures (2014)
pdf file
[14]Quantum spin correlations and random loops, in Mathematical Results in Quantum Mechanics, P. Exner, W. König, H. Neidhardt eds, pp 77-88, World Scientific (2015)
pdf file, arXiv:1404.1595, MathSciNet
[13]Quantum spin systems and phase transitions, Marseille lectures (2013)
pdf file
[12]Quantum Heisenberg models and random loop representations, in XVIIth International Congress on Mathematical Physics, Arne Jensen (ed.), 351-361, World Scientific (2013)
pdf file, arXiv:1211.4141, MathSciNet
[11]Phase transitions in classical and quantum Heisenberg models, Tübingen lectures (2012)
pdf file
[10]Entropy & the Quantum II, with R. Sims, Contemporary Mathematics 552 (2011)
pdf file, contents available here
[9]Entropy & the Quantum, with R. Sims, Contemporary Mathematics 529 (2010)
pdf file, contents available here, MathSciNet
[8]The model of interacting spatial permutations and its relation to the Bose gas, in Mathematical Results in Quantum Mechanics, pp 255-272, World Scientific (2008)
pdf file, arxiv:0712.2443, MathSciNet
[7]The Falicov-Kimball model, with Ch. Gruber, in Encyclopedia of mathematical physics, Elsevier (2006)
pdf file, math-ph/0502041
[6]Geometric and probabilistic aspects of boson lattice models, in In and out of equilibrium: Physics with a probability flavor, Progr. Probab. 51, 363-391, Birkhäuser (2002)
pdf file, math-ph/0103002, MathSciNet
[5]Hubbard model with magnetic field: antiferromagnetism and paramagnetism, with R. Kotecký, in Mathematical results in statistical mechanics, pp 223-238, World Scientific (1999)
, MathSciNet
[4]Discontinuous phase transitions in quantum lattice systems, PhD thesis, École Polytechnique fédérale de Lausanne (1998)
pdf file
[3]Incompressible phase in lattice systems of interacting bosons, with C. Borgs, R. Kotecký, unpublished (1997)
pdf file
[2]Falicov-Kimball model: ground states and flux phase, with Ch. Gruber, in Statistical models, Yang-Baxter equation and related topics, pp 118-125, World Scientific (1996)
, MathSciNet
[1]Flux phase problem in the 2-D Falicov-Kimball model, with Ch. Gruber, Physica A 232, 616-624 (1996)